• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrando as raízes!

Encontrando as raízes!

Mensagempor gfdbruno » Qui Ago 25, 2011 10:36

Ao dividir o polinômio A(x), que possui grau 4 e coeficientes reais, pelo polinômio B(x)= x³ + 4x, obtêm-se o quociente Q(x) e resto R(x). Sabe-se que 2 é uma raiz de R(x). Assim, sendo 'n' o número total de raízes reais de A(x), conclui-se que o conjunto de todos os valores que 'n' pode assumir é:

A - { 0, 2 ,4 }
B - { 0 , 2 }
C - { 0 ,4 }
D - { 2 ,4 }
E - { 4 }

Até onde cheguei: A(x) = B(x).Q(x) + R(x). O número 2 zera R(x) e B(x), logo 2 também é raiz de A(x). O polinômio B(x) tem outras duas raízes: 0 e -2. Então A(0) = R(0) e A(-2) = R(-2). Sei também que Q(x) te grau 1. Com essas informações, elimino as opções C e E. Como é um polinômio de grau 4, só pode ter 0, 2 ou 4 raízes reais. Logo a opção A também é descartada. Restam as opções B e D. Alguém me ajuda?
gfdbruno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 25, 2011 10:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Encontrando as raízes!

Mensagempor gfdbruno » Qui Ago 25, 2011 12:53

Já resolvido!
gfdbruno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 25, 2011 10:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.