por Micheline » Qua Jan 28, 2009 10:13
Minha dúvida agora é em relação a arcos e radianos. Eu usei essa fórmula 2\pi rad e c= 2\pi rad, mas não consegui encontar o valor do raio que está na resposta. O problem aé o seguinte : João percorreu em torno de uma praça circular um arco de 5 radianos.Para completar uma volta em torno da praça, falta para joão percorrer um arco de aproximadamente?
gostaria de entender o seguinte: Se foi usado o termo percorreu, então ele fez a volta toda? acho que poderia ter sido usado o termo percorre, e não percorreu.Bom esse arco ai seria um arco de 360º?
-
Micheline
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Jan 25, 2009 16:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Sandra Piedade » Qua Jan 28, 2009 19:46
Olá Micheline!
360 º = 2 Pi rad e como Pi é pouco mais do que 3, então uma volta completa é de cerca de 6 rad. Se foram percorridos 5 radianos, falta um radiano e mais um pouquinho para dar a volta completa.
Concorda? Abraço
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
por Micheline » Qui Jan 29, 2009 10:09
Valeu a dica

Obrigada Sandra

-
Micheline
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Jan 25, 2009 16:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Sandra Piedade » Qui Jan 29, 2009 10:12
Sempre que precisar, escreva!

Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
por Sandra Piedade » Qui Jan 29, 2009 21:22
Perdão, não tinha percebido a sua questão, pensei que a pergunta era que amplitude de arco faltava percorrer. Então a questão era para determinar o raio da praça? Não se importa de repetir a questão exactamente como tem aí?
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
por Micheline » Sex Jan 30, 2009 10:43
Eu consegui resover Sandra, pesquisei e achei uma regar de três que dá pra achar tbm, achei mais fácil

Obrigada pela atenção

-
Micheline
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Jan 25, 2009 16:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Sandra Piedade » Dom Fev 01, 2009 10:08
Micheline, fico descansada por ter conseguido, mas eu nem entendi a sua questão inicial... creio que não me deu um dos dados, por isso afinal de contas não ajudei nada... Mas já agora, não se importa de postar aqui a questão completa, para quem mais tarde tiver uma dúvida semelhante poder ver como se faz? O Ajuda Matemática agradece!
Já agora aproveito para relembrar os interessados que um arco de amplitude um radiano tem comprimento igual ao raio da circunferência, é por isso que se chama radiano. Se desenharem várias circunferências concêntricas e um ângulo ao centro, de amplitude um radiano, verão que os arcos são mais compridos apesar de terem a mesma amplitude.
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- radianos
por creberson » Seg Ago 20, 2012 10:08
- 1 Respostas
- 1599 Exibições
- Última mensagem por LuizAquino

Seg Ago 20, 2012 11:56
Geometria Espacial
-
- medida em radianos do circulo
por felipy » Qua Nov 09, 2011 18:16
- 0 Respostas
- 2865 Exibições
- Última mensagem por felipy

Qua Nov 09, 2011 18:16
Trigonometria
-
- Expressar medida do ângulo em radianos e graus?
por FilipiM » Dom Mar 09, 2014 16:54
- 1 Respostas
- 2110 Exibições
- Última mensagem por Russman

Dom Mar 09, 2014 23:57
Trigonometria
-
- ARCOS
por MERLAYNE » Qua Abr 04, 2012 23:28
- 1 Respostas
- 1462 Exibições
- Última mensagem por MarceloFantini

Qua Abr 04, 2012 23:54
Trigonometria
-
- Arcos - ITA
por DanielFerreira » Dom Abr 29, 2012 21:13
- 1 Respostas
- 1492 Exibições
- Última mensagem por nakagumahissao

Dom Abr 29, 2012 23:28
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.