• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Arcos e radianos

Arcos e radianos

Mensagempor Micheline » Qua Jan 28, 2009 10:13

Minha dúvida agora é em relação a arcos e radianos. Eu usei essa fórmula 2\pi rad e c= 2\pi rad, mas não consegui encontar o valor do raio que está na resposta. O problem aé o seguinte : João percorreu em torno de uma praça circular um arco de 5 radianos.Para completar uma volta em torno da praça, falta para joão percorrer um arco de aproximadamente?
gostaria de entender o seguinte: Se foi usado o termo percorreu, então ele fez a volta toda? acho que poderia ter sido usado o termo percorre, e não percorreu.Bom esse arco ai seria um arco de 360º?
Micheline
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jan 25, 2009 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Arcos e radianos

Mensagempor Sandra Piedade » Qua Jan 28, 2009 19:46

Olá Micheline!

360 º = 2 Pi rad e como Pi é pouco mais do que 3, então uma volta completa é de cerca de 6 rad. Se foram percorridos 5 radianos, falta um radiano e mais um pouquinho para dar a volta completa.

Concorda? Abraço
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Arcos e radianos

Mensagempor Micheline » Qui Jan 29, 2009 10:09

Valeu a dica :y: Obrigada Sandra :rose:
Micheline
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jan 25, 2009 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Arcos e radianos

Mensagempor Sandra Piedade » Qui Jan 29, 2009 10:12

Sempre que precisar, escreva! :-D
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Arcos e radianos

Mensagempor Micheline » Qui Jan 29, 2009 10:26

Sandra .Tentei fazer aqui e não to conseguindo. :n: :$
Micheline
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jan 25, 2009 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Arcos e radianos

Mensagempor Sandra Piedade » Qui Jan 29, 2009 21:22

Perdão, não tinha percebido a sua questão, pensei que a pergunta era que amplitude de arco faltava percorrer. Então a questão era para determinar o raio da praça? Não se importa de repetir a questão exactamente como tem aí?
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: Arcos e radianos

Mensagempor Micheline » Sex Jan 30, 2009 10:43

Eu consegui resover Sandra, pesquisei e achei uma regar de três que dá pra achar tbm, achei mais fácil :-D Obrigada pela atenção :rose:
Micheline
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jan 25, 2009 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Arcos e radianos

Mensagempor Sandra Piedade » Dom Fev 01, 2009 10:08

Micheline, fico descansada por ter conseguido, mas eu nem entendi a sua questão inicial... creio que não me deu um dos dados, por isso afinal de contas não ajudei nada... Mas já agora, não se importa de postar aqui a questão completa, para quem mais tarde tiver uma dúvida semelhante poder ver como se faz? O Ajuda Matemática agradece!

Já agora aproveito para relembrar os interessados que um arco de amplitude um radiano tem comprimento igual ao raio da circunferência, é por isso que se chama radiano. Se desenharem várias circunferências concêntricas e um ângulo ao centro, de amplitude um radiano, verão que os arcos são mais compridos apesar de terem a mesma amplitude.
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?