por dambros » Qua Nov 19, 2008 15:18
Boa tarde a todos,
Venho aqui humildemente pedir uma ajuda pois estou ficando sem opções.
Tenho algumas questões de subespaço vetoriais e estou completamente perdido. Já li muitos materiais sobre, mas não consigo entender o conceito do que tornará ou não em um subespaço.
Q1) Verificar se é ou não um Subespaço vetorial.
a) Seja V=R³ e W = {(x,y,z) E R³ | z=x+y+6}
Eu tentei desenvolver o seguinte:
Condição i:
(x1, y1, z1), (x2, y2, z2) E W, então:
(x1, y1, z1) = (x1, y1, x1+y1+6)
(x2, y2, z2) = (x2, y2, x2+y2+6)
Logo:
(x1+x2, y1+y2, x1+x2+y1+y2+12)
(x1+y1+12) =/= Z então não é um subespaço vetorial.
Condição ii:
W = ku
W = (kx1, ky1, kx1+ky1+6k)
(kx1+ky1+6k) = kz
A condição ii apesar de passar não valida como um subespaço por que a condição i falha.
Então eu gostaria de saber se todo esse meu raciocínio está correto.
Obriagado!
-
dambros
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 19, 2008 14:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Subespaço Vetorial] Subespaço envolvendo matrizes
por hyge » Qua Mai 02, 2018 17:04
- 2 Respostas
- 10984 Exibições
- Última mensagem por adauto martins

Dom Mai 06, 2018 12:28
Álgebra Linear
-
- [Subespaço Vetorial] Verificar que é o conjunto é subespaço
por anderson_wallace » Seg Dez 30, 2013 17:56
- 3 Respostas
- 4680 Exibições
- Última mensagem por Renato_RJ

Ter Dez 31, 2013 14:00
Álgebra Linear
-
- Espaços vetoriais
por alzenir agapito » Qui Jul 21, 2011 17:41
- 2 Respostas
- 2345 Exibições
- Última mensagem por alzenir agapito

Sex Jul 22, 2011 21:51
Álgebra
-
- Subespaços Vetoriais
por felipe_ad » Sex Ago 27, 2010 19:56
- 1 Respostas
- 2286 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 28, 2010 19:31
Geometria Analítica
-
- Subespaços vetoriais
por ewald » Seg Mar 26, 2012 03:50
- 6 Respostas
- 4359 Exibições
- Última mensagem por LuizAquino

Qui Mar 29, 2012 13:26
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.