• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Obter área do triângulo

Obter área do triângulo

Mensagempor -civil- » Qui Jun 16, 2011 01:32

Dados
r : x + 2y + 2z - 3 = 0
x + z - 3 = 0 ,
P = (2, 1, 4) e s : x - 3 = y + 1 =\frac{z + 6}{2}, seja Q a projeção ortogonal de P sobre r. Supondo que o sistema adotado é ortogonal, obtenha o ponto A de s tal que a área de triângulo PQA seja 9.


Eu passei a reta r para a forma vetorial e ficou desse jeito
r: X= (0, \frac{-3}{2}, 3) + \lambda(1, \frac{1}{2},-1)

Fiz a mesma coisa com a reta s
s: X=(3,-1,-6) + \lambda(1,1,2)

Para encontrar o ponto Q, eu pensei em usar a fórmula de projeção (Boulos, pg 67). Só que eu só posso utilizar vetores nessa fórmula. Daí eu usei o ponto da reta r, B=(0,\frac{-3}{2},3)

Eu tenho que \overrightarrow{BP}=(2,\frac{5}{2},1) e \overrightarrow{BQ}=(x,y+\frac{3}{2},z-3)

Então
\overrightarrow{BQ} = \frac{ (\overrightarrow{BP}.\overrightarrow{v})}{\|\overrightarrow{v}\|^2}.\overrightarrow{v}

fazendo as contas, achei que \overrightarrow{BQ} = (\frac{3}{2},\frac{3}{4},\frac{-3}{2})

Como \overrightarrow{BQ} = (x,y + \frac{3}{2}, z - 3) = (\frac{3}{2},\frac{3}{4},\frac{-3}{2})

encontrei Q = (\frac{3}{2},\frac{-3}{4},\frac{3}{2})

A partir daí como eu faço para encontrar o ponto A?

Agradeço pela ajuda
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Obter área do triângulo

Mensagempor LuizAquino » Qui Jun 16, 2011 17:01

Refaça as suas contas, pois \vec{BQ} está errado (e portanto Q também).

Para achar o ponto A, lembre-se que \frac{1}{2}||\vec{PA}\times\vec{PQ}|| = 9 .

Uma vez que você conhece P e Q, a equação acima só tem A de desconhecido.

Aqui vai uma dica: como A pertence a s, então ele tem o formato (3 + k, -1 + k, -6 + 2k), para alguma constante k. Isso significa que a equação acima apenas terá k de incógnita.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Obter área do triângulo

Mensagempor -civil- » Sáb Jun 18, 2011 16:23

Realmente, eu tinha calculado \overrightarrow{BQ} errado. Refazendo as contas, achei que \overrightarrow{BQ}=\overrightarrow{v}. Daí, Q=(1, -1,2). Depois calculando \frac{1}{2}||\overrightarrow{PA} \times \overrightarrow{BQ}||, cheguei que A pode ser (5,1,-2) ou (\frac{61}{5},\frac{41}{5},\frac{62}{5})

Agradeço pela ajuda!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.