• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Obter área do triângulo

Obter área do triângulo

Mensagempor -civil- » Qui Jun 16, 2011 01:32

Dados
r : x + 2y + 2z - 3 = 0
x + z - 3 = 0 ,
P = (2, 1, 4) e s : x - 3 = y + 1 =\frac{z + 6}{2}, seja Q a projeção ortogonal de P sobre r. Supondo que o sistema adotado é ortogonal, obtenha o ponto A de s tal que a área de triângulo PQA seja 9.


Eu passei a reta r para a forma vetorial e ficou desse jeito
r: X= (0, \frac{-3}{2}, 3) + \lambda(1, \frac{1}{2},-1)

Fiz a mesma coisa com a reta s
s: X=(3,-1,-6) + \lambda(1,1,2)

Para encontrar o ponto Q, eu pensei em usar a fórmula de projeção (Boulos, pg 67). Só que eu só posso utilizar vetores nessa fórmula. Daí eu usei o ponto da reta r, B=(0,\frac{-3}{2},3)

Eu tenho que \overrightarrow{BP}=(2,\frac{5}{2},1) e \overrightarrow{BQ}=(x,y+\frac{3}{2},z-3)

Então
\overrightarrow{BQ} = \frac{ (\overrightarrow{BP}.\overrightarrow{v})}{\|\overrightarrow{v}\|^2}.\overrightarrow{v}

fazendo as contas, achei que \overrightarrow{BQ} = (\frac{3}{2},\frac{3}{4},\frac{-3}{2})

Como \overrightarrow{BQ} = (x,y + \frac{3}{2}, z - 3) = (\frac{3}{2},\frac{3}{4},\frac{-3}{2})

encontrei Q = (\frac{3}{2},\frac{-3}{4},\frac{3}{2})

A partir daí como eu faço para encontrar o ponto A?

Agradeço pela ajuda
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Obter área do triângulo

Mensagempor LuizAquino » Qui Jun 16, 2011 17:01

Refaça as suas contas, pois \vec{BQ} está errado (e portanto Q também).

Para achar o ponto A, lembre-se que \frac{1}{2}||\vec{PA}\times\vec{PQ}|| = 9 .

Uma vez que você conhece P e Q, a equação acima só tem A de desconhecido.

Aqui vai uma dica: como A pertence a s, então ele tem o formato (3 + k, -1 + k, -6 + 2k), para alguma constante k. Isso significa que a equação acima apenas terá k de incógnita.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Obter área do triângulo

Mensagempor -civil- » Sáb Jun 18, 2011 16:23

Realmente, eu tinha calculado \overrightarrow{BQ} errado. Refazendo as contas, achei que \overrightarrow{BQ}=\overrightarrow{v}. Daí, Q=(1, -1,2). Depois calculando \frac{1}{2}||\overrightarrow{PA} \times \overrightarrow{BQ}||, cheguei que A pode ser (5,1,-2) ou (\frac{61}{5},\frac{41}{5},\frac{62}{5})

Agradeço pela ajuda!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.