• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver a equação linear?

Como resolver a equação linear?

Mensagempor btag » Qui Mai 05, 2011 14:33

x+3y-2z=5
3x+5y+6z=7
2x+4y+3z=8
btag
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 05, 2011 14:28
Formação Escolar: GRADUAÇÃO
Área/Curso: FISIOTERAPIA
Andamento: formado

Re: Como resolver a equação linear?

Mensagempor carlosalesouza » Qui Mai 05, 2011 15:39

Existem diversas formas. Pode ser feito por matriz, por substituição, enfim...

Por matriz é mais fácil... por substituição é melhor de entender (a meu ver)

Considerando que x, y e z mantém o mesmo valor nas três equações, o que é necessário para caracterizar o sistema de equações, pegue uma equação, encontre a relação entre uma das variáveis e as demais...

Depois, pegue outra sentença e substitua a variável que voce encontrou... assim, restarão duas variáveis... isole uma delas e siga substituindo... rs em breve voce terá o valor de uma delas e poderá, sempre substituindo, encontrar o valor das três...

Como disse, este não é o caminho mais fácil, mas permite que voce visualize bem a relação entre as variáveis...

Outro método é o da soma... da mesma forma que num sistema com duas variáveis...

Voce separa duas equações e multiplica os dois lados da igualdade de uma delas por um valor que faça com que uma das variáveis da primeira sentença se torne simétrica à da segunda equação.... então você soma os termos restantes do produto e no final te sobrarão duas variáveis numa nova equação. Voce isola uma delas e segue substituindo... rs

Pra ficar mais fácil de entender, vamos usar um outros sistema similar:

\\
\left \{ \begin{matrix} 
x - 3y + 5z = 1\\
x + 2y + z = 12\\
2x - y + 3z = 10
 \end{matrix}\right

Pela soma, separamos as duas primeiras e multiplicando a primeira por -1
x - 3y + 5z = 1 (-1)\\
x + 2y + z = 12

Somando as duas equações:
\\
x - x + 2y + 3y + z - 5z = 12 - 1\\
5y - 4z = 11\\
5y = 11 + 4z \\
y = \frac{11 + 4z}{5}

Podemos, então, subsitituir o y por \frac{11 + 4z}{5} em qualquer das equações iniciais
\\
2x - y + 3z = 10\\
2x - \frac{11 + 4z}{5} + 3z = 10\\
2x +\frac{15z -(11 + 4z)}{5} = 10 \\
2x + \frac{15z - 4z - 11}{5} = 10\\
2x + \frac{11z-11}{5}=10\\
2x = 10 - \frac{11}{5}(z-1) \\
x = 5 - \frac{11}{10}(z-1)

Temos agora duas variáveis que podem ser substituídas por z...

\\
x - 3y +5z = 1\\
5 - \frac{11}{10}(z-1) - 3(\frac{11+4z}{5}) + 5z = 1\\
\frac{50- (11z - 11) - 6(11+4z)+50z-10}{10}=0\\
\frac{50 + 11 - 66 - 10 - 11z - 24z + 50z}{10}=0\\
\frac{61-76}{10}+\frac{50z - 35z}{10}=0\\
-\frac{15}{10}+\frac{15z}{10}=0\\
\frac{3}{2}z=\frac{3}{2}\\
z = 1

Assim:
\\
y = \frac{11+4z}{5}\\
y = \frac{11+4(1)}{5}\\
y = \frac{15}{5}\\
y = 3

e

\\
x = 5 - \frac{11}{10}(z-1)\\
x = 5 - \frac{11}{10}(0)\\
x = 5

Certo? Existem diversos caminhos, mas idéia é sempre levar em consideração as propriedades da igualdade.

O caminho da matriz é com certeza o mais rápido, pois a matriz é um algoritmo válido para realizar esse tipo de procedimento... infelizmente, a menos que voce entenda a natureza da matriz, a solução pode parecer ter vindo por mágica, e voce acaba não entendendo o funcionamento da resolução... pela soma e pela substituição, voce visualiza o desenrolar da resolução de forma mais descritiva, ficando mais fácil aprender e não esquecer mais...

Espero ter ajudado, qualquer dúvida, é só falar....
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?