por jessicaccs » Ter Mar 08, 2011 19:55
Boa noite,
gostaria de ajuda nessa questão:

As alternativas são:
a) 4 b) 5 c) 6 d) 7 e) 8
Tentei resolvê-la através da propriedade da PG que diz que um termo médio de dois equidistantes deste é a média geométrica dos dois números.
Entretanto, não consegui resolver.
Obrigada,
Jéssica.
-
jessicaccs
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Out 13, 2009 19:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Efomm
- Andamento: cursando
por LuizAquino » Qua Mar 09, 2011 21:28
Sabemos que em uma p.g. é válido que

, com

e

não nulos. Disso, nós obtemos que:



(vamos identificar essa equação como (a))

Dividindo tudo por

:


(vamos identificar essa equação como (b))
Sabemos que o termo geral de uma p.g. é dado por

, onde
q é a razão. Desse modo, temos que

.
Nós queremos determinar
n tal que

.
Note que para
n=8, nós temos que:


Usando a equação (a) e fazendo as simplificações necessárias, nós obtemos:

Agora, usando a equação (b) concluímos que o número
n procurado é 8.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jessicaccs » Qua Mar 09, 2011 22:18
Obrigada pela resolução, Luiz.
Só gostaria que você tirasse uma dúvida que fiquei.
Por que você adotou o número 8 dentre tantos outros que poderiam ser?
Obrigada.
-
jessicaccs
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Out 13, 2009 19:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Efomm
- Andamento: cursando
por LuizAquino » Qua Mar 09, 2011 23:31
jessicaccs escreveu:Por que você adotou o número 8 dentre tantos outros que poderiam ser?
Nesse caso eu adotei
n = 8 devido as opções dadas no gabarito. Mas, poderíamos ter feito de outra maneira.
Nós queremos determinar
n tal que

.
Lembrando-se das equações (a) e (b), nós podemos armar a seguinte equação exponencial (na qual a base é

):
![(\cos x)^{\frac{3}{2}} \left[\frac{\cos x}{(\cos x)^{\frac{3}{2}}}\right]^{n-1} = (\cos x)^{-2} (\cos x)^{\frac{3}{2}} \left[\frac{\cos x}{(\cos x)^{\frac{3}{2}}}\right]^{n-1} = (\cos x)^{-2}](/latexrender/pictures/08df63b8b622d55869938e6d324d1671.png)

n = 8
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jessicaccs » Sex Mar 11, 2011 16:22
Obrigada, Luiz Aquino.

-
jessicaccs
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Out 13, 2009 19:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Efomm
- Andamento: cursando
Voltar para Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.