• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto L.D tais que entre eles sejam L.I.?

Conjunto L.D tais que entre eles sejam L.I.?

Mensagempor tsigwt » Sáb Set 06, 2008 22:24

Olá pessoal, tudo bem!?

Uma dúvida, existe algum conjunto L.D. que se eu pegar deste conjunto os vetores, consigo formar um outro conjunto L.I?

Como assim:

W = {v1, v2, v3, v4} - L.D.

Sendo que se eu pegar assim: {v1, v2, v3} deve ser L.I. e {v2,v3,v4} também L.I.

Eu estive pensando: Tudo bem eu até consigo pegar um conjuto de 4 vetores L.D.
Mas de acordo com uma definicao de um livro, se um conjunto é L.D. este é somente L.D e não L.I. (se estiver errado na interpretação me corrijam).

E outra se eu pegar o conjuto assim: {v1, v2, v3} vou ter 4 variáveis para 3 equações, o que vou ter uma pelo menos em função de outra, correto? o que define a combinação linear, gerando um conjunto l.d.

Estou correto em pensar assim?
Em qual forma posso provar isso algebricamente?

Obrigado.
Até mais, fiquem com Deus, paz de Jesus.
"Juntos somos mais que vencedores" (Rm 8:37)
tsigwt
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 21, 2008 23:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Ccomp.
Andamento: cursando

Re: Conjunto L.D tais que entre eles sejam L.I.?

Mensagempor tsigwt » Sáb Set 06, 2008 22:25

Esqueci de citar: os vetores estão no R4.
Desculpe.
"Juntos somos mais que vencedores" (Rm 8:37)
tsigwt
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 21, 2008 23:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Ccomp.
Andamento: cursando

Re: Conjunto L.D tais que entre eles sejam L.I.?

Mensagempor admin » Ter Set 09, 2008 16:37

Olá tsigwt!

Infelizmente, ainda não temos no fórum um colaborador professor universitário.

Sobre um aspecto da sua dúvida, podemos sim ter uma seqüência L.I. dentre os vetores L.D., até porque, por definição:
Qualquer seqüência de vetores com quatro ou mais elementos é linearmente dependente.
Ou seja, um dos vetores da seqüência é gerado pelos demais (não serão todas as "subseqüências" L.I.).

Dentre as referências bibliográficas, posso citar o livro do Boulos, Geometria Analítica - um tratamento vetorial, páginas 27-30, com definições, análises e demonstrações relacionadas.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D