por tsigwt » Sáb Set 06, 2008 22:24
Olá pessoal, tudo bem!?
Uma dúvida, existe algum conjunto L.D. que se eu pegar deste conjunto os vetores, consigo formar um outro conjunto L.I?
Como assim:
W = {v1, v2, v3, v4} - L.D.
Sendo que se eu pegar assim: {v1, v2, v3} deve ser L.I. e {v2,v3,v4} também L.I.
Eu estive pensando: Tudo bem eu até consigo pegar um conjuto de 4 vetores L.D.
Mas de acordo com uma definicao de um livro, se um conjunto é L.D. este é somente L.D e não L.I. (se estiver errado na interpretação me corrijam).
E outra se eu pegar o conjuto assim: {v1, v2, v3} vou ter 4 variáveis para 3 equações, o que vou ter uma pelo menos em função de outra, correto? o que define a combinação linear, gerando um conjunto l.d.
Estou correto em pensar assim?
Em qual forma posso provar isso algebricamente?
Obrigado.
Até mais, fiquem com Deus, paz de Jesus.
"Juntos somos mais que vencedores" (Rm 8:37)
-
tsigwt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Ago 21, 2008 23:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ccomp.
- Andamento: cursando
por tsigwt » Sáb Set 06, 2008 22:25
Esqueci de citar: os vetores estão no R4.
Desculpe.
"Juntos somos mais que vencedores" (Rm 8:37)
-
tsigwt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Ago 21, 2008 23:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ccomp.
- Andamento: cursando
por admin » Ter Set 09, 2008 16:37
Olá tsigwt!
Infelizmente, ainda não temos no fórum um colaborador professor universitário.
Sobre um aspecto da sua dúvida, podemos sim ter uma seqüência L.I. dentre os vetores L.D., até porque, por definição:
Qualquer seqüência de vetores com quatro ou mais elementos é linearmente dependente.
Ou seja, um dos vetores da seqüência é gerado pelos demais (não serão todas as "subseqüências" L.I.).
Dentre as referências bibliográficas, posso citar o livro do Boulos, Geometria Analítica - um tratamento vetorial, páginas 27-30, com definições, análises e demonstrações relacionadas.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- FUNÇOES eles nao colocaram nenhuma imagem
por joao1604 » Dom Fev 21, 2016 22:29
- 1 Respostas
- 2941 Exibições
- Última mensagem por DanielFerreira

Seg Fev 22, 2016 20:59
Funções
-
- Área - Sejam ABCD um quadrado de lado 12 cm, E o ponto médio
por marguiene » Sex Out 10, 2014 10:40
- 0 Respostas
- 1500 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:40
Geometria Plana
-
- [Funções] f e g tais que funcão composta g o f é injetiva
por Prof Prevaricador » Sex Abr 12, 2013 13:58
- 4 Respostas
- 2066 Exibições
- Última mensagem por Prof Prevaricador

Sáb Abr 13, 2013 18:33
Funções
-
- Verificar se existem números reais x tais que...
por Aliocha Karamazov » Sex Mar 25, 2011 15:39
- 2 Respostas
- 1922 Exibições
- Última mensagem por Aliocha Karamazov

Sex Mar 25, 2011 15:58
Álgebra Elementar
-
- Se os números reais positivos x e y forem tais que:
por andersontricordiano » Seg Abr 11, 2011 15:25
- 7 Respostas
- 5393 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 12, 2011 12:31
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.