• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de 2 grau

Equação de 2 grau

Mensagempor Bruno Pinheiro » Dom Dez 26, 2010 22:22

Olá, eu tentei resolver este exercício e não cheguei na resposta correta. Não sei se o gabarito está incorreto ou eu errei na resolução. Alguém pode me dar uma orientação?

\sqrt[]{x+2}=4-x

a) 0 raiz real.
b) apenas 1 raiz real, negativa.
c) apenas 1 raiz real, positiva. (gabarito)
d) 2 raízes reais, de sinais contrários.
e) 2 raízes reais, de sinais iguais. (minha opção)

Eu propus a seguinte solução:

{(\sqrt[]{x+2} \right))}^{2}={(4-x)}^{2} \Rightarrow x+2={4}^{2}-2.4.x+{(-x)}^{2} \Rightarrow 16-8x+{x}^{2}-x-2=0 \Rightarrow {x}^{2}-9x+14=0

\Delta={b}^{2}-4.a.c \Rightarrow \Delta={(-9)}^{2} -4.1.14=25

x=(-(-9) - \sqrt[]{25})/2.1=(9-5)/2=4/2=2

ou

x=(-(-9)+\sqrt[]{25})2.1=(9+5)/2=14/2=7
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Equação de 2 grau

Mensagempor Molina » Seg Dez 27, 2010 20:46

Boa noite, Bruno.

Substitua as duas raízes encontradas e veja se as duas satisfazem a igualdade.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação de 2 grau

Mensagempor Bruno Pinheiro » Ter Dez 28, 2010 01:01

Obrigado pela orientação, Molina. Sim, satisfazem. Portanto, o gabarito está incorreto mesmo.
Tenha uma boa-noite!
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59