• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo 2: Integral tripla

Cálculo 2: Integral tripla

Mensagempor Eduardo Pereira » Dom Out 24, 2010 19:03

Pessoal, sou novo por aqui, então não sei bem como funciona, mas queria ajuda para resolver esse exercício de Cálculo 2:

Usar coordenadas cilíndricas ou esféricas para calcular a expressão:
\int_{0}^{a}\int_{0}^{\sqrt[2]{a^2-x^2}}\int_{0}^{\sqrt[2]{a^2-x^2-y^2}}x^2 dz dy dx

Sei que a superfície superior do sólido vai ser z = a^2 - x^2 - y^2 e passando isso para coordenadas cilíndricas, eu fico com z = a^2 - r^2
A superfície inferior vai ser um plano xy de equação z = 0
e pelos limites de integração em x e y, a projeção R é a região do plano xy delimitada pelo círculo y^2 + x^2 = a^2

então o ângulo \Theta vai variar de 0 a 2\Pi
r vai variar de 0 a a
e o integrando que é x² eu vou ter que mudar para r^2 - (rsen\Theta)^2

ficando assim:
\int_{0}^{2\Pi}\int_{0}^{a}\int_{0}^{a^2-r^2}[r^2 - (rsen\Theta)^2]dz dr d\Theta

mas a resolução está ficando muito extensa e complicada, então não sei se está certo.
O que vocês acham? Eu estou fazendo errado? Tem outra maneira de fazer isso que seja mais simples?
Eduardo Pereira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 24, 2010 18:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Cálculo 2: Integral tripla

Mensagempor luispereira » Qui Dez 23, 2010 23:00

na verdade oque você esta integrando x^2 em torno de uma esfera de raio a. O Jacobiano para esta situação(coordenadas esféricas) é:

I=r^2sin{\phi}d{r}d{\phi}d{\theta} com x=rsin{\phi}cos{\theta}

Daí, o cálculo fica:

\int^{2\pi}_{0}\int^{\pi}_{0}\int^{a}_{0}r^4{sin{\phi}}^3{cos{\theta}}^2drd{\phi}d{\theta}=\frac{4R^5\pi}{15}

Não demonstrei a integral porque essa é a parte mais fácil de fazer e acho que esse não é seu problema, mas sim a construção. Se o resultado não for esse, fale-me que eu resolverei denovo
luispereira
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Dez 23, 2010 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.