Usar coordenadas cilíndricas ou esféricas para calcular a expressão:
![\int_{0}^{a}\int_{0}^{\sqrt[2]{a^2-x^2}}\int_{0}^{\sqrt[2]{a^2-x^2-y^2}}x^2 dz dy dx \int_{0}^{a}\int_{0}^{\sqrt[2]{a^2-x^2}}\int_{0}^{\sqrt[2]{a^2-x^2-y^2}}x^2 dz dy dx](/latexrender/pictures/0b8d4c3cb95f41b672f0bb945d260fb5.png)
Sei que a superfície superior do sólido vai ser
e passando isso para coordenadas cilíndricas, eu fico com 
A superfície inferior vai ser um plano xy de equação z = 0
e pelos limites de integração em x e y, a projeção R é a região do plano xy delimitada pelo círculo

então o ângulo
vai variar de 0 a 
r vai variar de 0 a a
e o integrando que é x² eu vou ter que mudar para

ficando assim:
![\int_{0}^{2\Pi}\int_{0}^{a}\int_{0}^{a^2-r^2}[r^2 - (rsen\Theta)^2]dz dr d\Theta \int_{0}^{2\Pi}\int_{0}^{a}\int_{0}^{a^2-r^2}[r^2 - (rsen\Theta)^2]dz dr d\Theta](/latexrender/pictures/490f925865996e77feeb57cf71a59e44.png)
mas a resolução está ficando muito extensa e complicada, então não sei se está certo.
O que vocês acham? Eu estou fazendo errado? Tem outra maneira de fazer isso que seja mais simples?

em torno de uma esfera de raio a. O Jacobiano para esta situação(coordenadas esféricas) é:
com 

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.