• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de Trigonometria

Exercicio de Trigonometria

Mensagempor Churchill » Sáb Out 02, 2010 19:16

Para evitar as raízes de uma árvore centenária, uma conduta de gás tem de subir 0.58 metros ao longo de uma distância de 2.1 metros, como se ilustra na figura.

Imagem

Como o material de que são feitas as condutas não é susceptível de ser dobrado, o tubo tem de ser cortado em dois sítios. Qual o ângulo de corte \theta?

Repara que, dividindo o tubo por um corte, segundo um ângulo \theta, e rodando uma das partes 180º , é possível reajustar as secções.

Imagem

Este é o enunciado.

Eu comecei por determinar tg\beta=0.58/2.1 e determinei a amplitude do ângulo \beta, mas depois não estou a perceber como hei de acabar o exercício.

PS: o resultado dá \theta =82,28º

Se alguém me puder ajudar agradecia imenso.
Churchill
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 02, 2010 18:52
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciências e tecnologias
Andamento: cursando

Re: Exercicio de Trigonometria

Mensagempor Douglasm » Sáb Out 02, 2010 20:21

Olá Churchill. Tente enxergar o seguinte:

2\theta = 180^o - \beta

A partir daí você encontra o resultado desejado. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercicio de Trigonometria

Mensagempor Churchill » Dom Out 03, 2010 07:51

Obrigado pela ajuda Douglasm.
Churchill
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 02, 2010 18:52
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciências e tecnologias
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59