• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Binômio , questão da Unirio

Binômio , questão da Unirio

Mensagempor Stephanie » Sáb Jul 31, 2010 17:43

Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada
Stephanie
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 31, 2010 17:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Binômio , questão da Unirio

Mensagempor Molina » Dom Ago 01, 2010 13:55

Stephanie escreveu:Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada

Bom dia.

Primeiramente, Termo Central ou Médio é aquele que fica no meio, se o desenvolvimento for de grau par.

Por exemplo, em (a+b)^2, onde n=2, o grau é par. Desenvolvendo este binômio temos que:

(a+b)^2=a^2+2ab+b^2, ou seja, o termo médio é o 2ab, por estar justamente no CENTRO do desenvolvimento do binômio.

Considerando agora um binômio genérico, ou seja, (x+y)^n, pela fórmula geral do Binômio de Newton, temos que:

T_{p+1}=\begin{pmatrix}
   n  \\ 
   0 
\end{pmatrix}x^ny^0+
\begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}x^{n-1}y^1+
\begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}x^{n-2}y^2+...

Como a questão fala em 2° e 3° termo, não precisamos dar continuidade no desenvolvimento. Os coeficientes destes termos são, respectivamente, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix} e \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}.

Seguindo o que o enunciado diz, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54

Vale lembrar que \begin{pmatrix}
   n  \\ 
   p 
\end{pmatrix}=C_{n,p}=\frac{n!}{(n-p)!p!}

Desenvolvendo \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54 chegamos em n=-9 e n=12. Ficamos apenas com o valor positivo, ou seja, n=12.

Isso significa, que desenvolvendo agora (x+y)^{12} teremos T_1,\;T_2,\;T_3,\;...\;,\;T_{13} termos.

Basta você verificar de 1 ao 13 qual é o termo central.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}