• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Binômio , questão da Unirio

Binômio , questão da Unirio

Mensagempor Stephanie » Sáb Jul 31, 2010 17:43

Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada
Stephanie
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 31, 2010 17:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Binômio , questão da Unirio

Mensagempor Molina » Dom Ago 01, 2010 13:55

Stephanie escreveu:Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada

Bom dia.

Primeiramente, Termo Central ou Médio é aquele que fica no meio, se o desenvolvimento for de grau par.

Por exemplo, em (a+b)^2, onde n=2, o grau é par. Desenvolvendo este binômio temos que:

(a+b)^2=a^2+2ab+b^2, ou seja, o termo médio é o 2ab, por estar justamente no CENTRO do desenvolvimento do binômio.

Considerando agora um binômio genérico, ou seja, (x+y)^n, pela fórmula geral do Binômio de Newton, temos que:

T_{p+1}=\begin{pmatrix}
   n  \\ 
   0 
\end{pmatrix}x^ny^0+
\begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}x^{n-1}y^1+
\begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}x^{n-2}y^2+...

Como a questão fala em 2° e 3° termo, não precisamos dar continuidade no desenvolvimento. Os coeficientes destes termos são, respectivamente, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix} e \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}.

Seguindo o que o enunciado diz, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54

Vale lembrar que \begin{pmatrix}
   n  \\ 
   p 
\end{pmatrix}=C_{n,p}=\frac{n!}{(n-p)!p!}

Desenvolvendo \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54 chegamos em n=-9 e n=12. Ficamos apenas com o valor positivo, ou seja, n=12.

Isso significa, que desenvolvendo agora (x+y)^{12} teremos T_1,\;T_2,\;T_3,\;...\;,\;T_{13} termos.

Basta você verificar de 1 ao 13 qual é o termo central.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: