• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(U.CAMPINAS-68)Equação

(U.CAMPINAS-68)Equação

Mensagempor flavio2010 » Sáb Jul 10, 2010 20:16

O valor de a para que para que o produto das raízes da equação 2x^4-ax^2+1=0, seja um núumero inteiro é:
a)2
b)V2
c)V2/2
d))-1
e)n.r.a
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Tom » Sáb Jul 10, 2010 23:57

Tem certeza que é o produto das raízes?
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor flavio2010 » Dom Jul 11, 2010 09:34

Olá Tom.
A questão é de livro do Iezzi, e confere o enunciado.
Um abraço fraterno.
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Douglasm » Dom Jul 11, 2010 10:50

Se nós considerarmos a equação na forma:

ax^4 + bx^3 + cx^2 + dx + e = 0

As relações de Girard nos dizem que o produto das raízes é dado por:

P = \frac{e}{a} \;\;\mbox{nesse caso em particular:}\;\; P = \frac{1}{2}

Por conta disso, vemos que o produto das raízes não será inteiro, independente do valor de "a" (no problema). A resposta é alternativa e.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Tom » Dom Jul 11, 2010 16:06

Ahhh eu não vi que tinha a opção n.r.a. e como era impossivel ser inteira, achei estranho. A análise do Douglas está correta.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}