• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com raiz no numerador

Limites com raiz no numerador

Mensagempor liliars » Qua Jul 07, 2010 16:34

Preciso de ajuda com o seguinte limite:

\lim_{x \rightarrow\infty}\frac{\sqrt[]{x² + 2x}}{5x - 1}

Sei que tem de multiplicar pela raiz/raiz, mas depois, não consigo eliminá-la do denominador.
Alguém?
:)
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor liliars » Qua Jul 07, 2010 16:36

* x² aí em cima, hihi.
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor Tom » Qui Jul 08, 2010 01:20

Desejamos obter: \lim_{x \rightarrow\infty}\frac{\sqrt{x^2 + 2x}}{5x - 1}

Ora, \lim_{x \rightarrow\infty}\frac{\sqrt{x^2 + 2x}}{5x - 1}=\lim_{x \rightarrow\infty}\frac{\sqrt{x^2(1 + \frac{2}{x})}}{x(5 - \frac{1}{x})}=\lim_{x \rightarrow\infty}\frac{|x|\sqrt{1 + \frac{2}{x}}}{x(5 - \frac{1}{x})}=\lim_{x \rightarrow\infty}\frac{|x|}{5x}

Liliars, como você não definiu se o limite é tendendo a +\infty ou -\infty, vou fazer os dois casos:

Para \lim_{x \rightarrow+\infty}\frac{|x|}{5x}; como x\rightarrow+\infty decorre em |x|=x e assim, \lim_{x \rightarrow+\infty}\frac{|x|}{5x}=\dfrac{1}{5}

Para \lim_{x \rightarrow-\infty}\frac{|x|}{5x}; como x\rightarrow-\infty decorre em |x|=-x e assim, \lim_{x \rightarrow-\infty}\frac{|x|}{5x}=\dfrac{-1}{5}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Limites com raiz no numerador

Mensagempor liliars » Sex Jul 09, 2010 02:16

muito melhor! obrigada!
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor elinesena » Sáb Nov 24, 2012 15:22

Boa tarde! ^^
Alguém poderia me explicar porque o x fica em módulo?

Grata
elinesena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 24, 2012 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Contábeis
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.