por carolzinhag3 » Seg Abr 10, 2017 23:11
Seja

. Mostre que os planos tangentes ao gráfico

contém a origem.
-
carolzinhag3
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 01, 2016 23:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por carolzinhag3 » Sex Abr 14, 2017 23:46
Eu fiz igual a ele, mas no final meu plano tangente deu
![\[z =-x'\cos \frac{x'}{y'}+ (\cos \tfrac{x'\ }{y'}-\frac{x'}{y'}sen\frac{x'}{y'})x +(\frac{x'^2}{y'^2}sen\frac{x'}{y'})y\] \[z =-x'\cos \frac{x'}{y'}+ (\cos \tfrac{x'\ }{y'}-\frac{x'}{y'}sen\frac{x'}{y'})x +(\frac{x'^2}{y'^2}sen\frac{x'}{y'})y\]](/latexrender/pictures/cb60f4080f6611ebffcbe1a52f01990f.png)
Só esse

que tá diferente
Alguém pode tentar resolver, por favor!!!
-
carolzinhag3
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 01, 2016 23:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação do Plano Tangente - Plano Paralalelo]
por raimundoocjr » Qui Out 24, 2013 22:10
- 0 Respostas
- 2693 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 22:10
Cálculo: Limites, Derivadas e Integrais
-
- PLANO TANGENTE
por renan_cpime14 » Sáb Out 12, 2013 14:49
- 0 Respostas
- 954 Exibições
- Última mensagem por renan_cpime14

Sáb Out 12, 2013 14:49
Cálculo: Limites, Derivadas e Integrais
-
- Equacao plano tangente
por Flames » Ter Mar 13, 2012 00:10
- 4 Respostas
- 2558 Exibições
- Última mensagem por Flames

Ter Mar 13, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] plano tangente
por Higor Yuri » Seg Jun 18, 2012 12:33
- 1 Respostas
- 2906 Exibições
- Última mensagem por LuizAquino

Ter Jun 19, 2012 11:47
Cálculo: Limites, Derivadas e Integrais
-
- Superfície e Plano Tangente- URGENTE
por leroaquino » Qui Set 17, 2015 19:46
- 2 Respostas
- 2129 Exibições
- Última mensagem por leroaquino

Seg Set 21, 2015 16:10
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.