por Sir Rick » Qui Nov 26, 2015 13:28
01 - Considere as funções f e g, definidas por f(x) = x +1 e g(x) = 2× sen(x) , com x real. a) Esboce os gráficos de f e g.
Obtenha as expressões de f º g e g º f em função de x, e esboce o gráfico dessas duas funções compostas
na questao aparece dois graficos para montarmos , o primeiro grafico , joguei valores aleatorios para x e y , e resolvi , mas o segundo grafico fiquei na duvida pois a formula era
g(x) =2xsen(x), e ai q esta a minha duvida como resolver esta funcao , qual o valor q usarei para sen(x) e como agir em situaçoes com esta em que em algumas questoes aparece , sen, cos...
muito obrigado
-
Sir Rick
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Nov 26, 2015 13:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Gebe » Ter Dez 08, 2015 03:11
Se tu observar a função 2xsin(x), temos uma função linear (2x) multiplicando uma função sin(x), logo a função resultante sera uma senoide que tem sua amplitude variante, ou seja, a medida que avançamos (ou retrocedemos) os valores de "x" a função sin(x) tem amplitude diferente.
Na imagem que coloco em anexo, pode-se ver a função (2x), a função sin(x) e a função 2xsin(x). Observa como a senoide resultante "acompanha" o valor da função (2x). Esta figura foi feita no programa winplot, é um otimo programa pra este tipo de estudo bem leve (não mais que 5mb) e de facil utilização, recomendo.

- 2xsin(x)
Quanto a fog e gof:
fog = ( 2xsin(x) ) +1 ou seja, vai ser a função 2xsin(x) deslocada 1 unidade para cima.
gof = 2(x+1)sin(x+1) = (2x+2)sin(x+1) esta é um pouco mais trabalhosa.
A gof será uma senoide com amplitude variante e esta variação segue a função linear (2x+2) semelhante a g(x). Além disso, como temos sin(x+1), o "1" nos diz que a função terá que ser deslocada 1 unidade à ESQUERDA.
Estas duas funções seguem anexadas tambem:
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- 3 questões de Binômio que não consigo resolver! =/
por Giles » Qua Nov 05, 2008 19:31
- 2 Respostas
- 5959 Exibições
- Última mensagem por Molina

Qui Nov 06, 2008 00:40
Binômio de Newton
-
- não consigo resolver estas questões
por igorluanabianca » Sex Jul 24, 2009 19:58
- 2 Respostas
- 3663 Exibições
- Última mensagem por Cleyson007

Sáb Jul 25, 2009 09:52
Matemática Financeira
-
- nao consigo resolver essas questoes
por janair sousa » Ter Ago 16, 2011 16:17
- 4 Respostas
- 2330 Exibições
- Última mensagem por janair sousa

Sáb Ago 20, 2011 16:27
Logaritmos
-
- [Questões de Probabilidade] - Como resolver?
por cleberrodrigo » Qui Nov 28, 2013 16:20
- 1 Respostas
- 1884 Exibições
- Última mensagem por Bravim

Sex Nov 29, 2013 00:48
Probabilidade
-
- Como resolver essas questoes?Ajudem-me
por janair sousa » Ter Ago 16, 2011 16:26
- 1 Respostas
- 1867 Exibições
- Última mensagem por Neperiano

Sex Ago 19, 2011 19:59
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.