por Mai96 » Qua Jul 08, 2015 22:12
Calcular o máximo e mínimo global da função:

no intervalo [-5,5]
-
Mai96
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jul 08, 2015 21:59
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por adauto martins » Qua Jul 15, 2015 15:40

...
de 1)

...
de 2)

...logo maximo e minimos sao na origem...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Jul 16, 2015 18:39
uma correçao...


...sao funçoes constantes,logo nao tem maximos e minimos...obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [calculo] extremos;ponto de minimo e maximo
por beel » Dom Out 30, 2011 19:15
- 2 Respostas
- 2009 Exibições
- Última mensagem por LuizAquino

Seg Out 31, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] extremos;ponto de minimo e maximo
por citadp » Qua Jun 20, 2012 11:42
- 1 Respostas
- 1589 Exibições
- Última mensagem por e8group

Qua Jun 20, 2012 13:17
Cálculo: Limites, Derivadas e Integrais
-
- Máximo e mínimo
por thadeu » Qua Nov 18, 2009 13:47
- 1 Respostas
- 4059 Exibições
- Última mensagem por Elcioschin

Qua Nov 18, 2009 17:50
Trigonometria
-
- [Maximo e Minimo]
por Scheu » Sex Mar 16, 2012 01:23
- 1 Respostas
- 2341 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:14
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo & Minimo]
por allakyhero » Sáb Jun 30, 2012 12:41
- 6 Respostas
- 4661 Exibições
- Última mensagem por allakyhero

Dom Jul 01, 2012 11:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.