• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de Máximo e Mínimo Global - Calculo I

Questão de Máximo e Mínimo Global - Calculo I

Mensagempor Mai96 » Qua Jul 08, 2015 22:12

Calcular o máximo e mínimo global da função: f(x)= \left|x \right|+\left|x-1 \right|+\left|x-2 \right|+\left|x-3 \right|-4\left|x-4 \right| no intervalo [-5,5]
Mai96
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 08, 2015 21:59
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Questão de Máximo e Mínimo Global - Calculo I

Mensagempor adauto martins » Qua Jul 15, 2015 15:40

1)f(x)=x+(x-1)+(x-2)+(x-3)-4(x-4)...se x \succeq 0
2)f(x)=-x-(x-1)-(x-2)-(x-3)+4(x-4)...se x\prec 0...
de 1)f(x)=-2...f'(x)=0...p/x \succeq 0...
de 2)f(x)=2...f'(x)=0...p/ x\prec 0......logo maximo e minimos sao na origem...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Questão de Máximo e Mínimo Global - Calculo I

Mensagempor adauto martins » Qui Jul 16, 2015 18:39

uma correçao...
f(x)=-2...p/x\succeq 0
f(x)=2...p/x\prec 0......sao funçoes constantes,logo nao tem maximos e minimos...obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}