• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Inteiros e Criptografia RSA - Álgebra

Números Inteiros e Criptografia RSA - Álgebra

Mensagempor kesselring » Qua Fev 17, 2010 02:39

Sendo n um número inteiro maior que 1, verifique as seguintes igualdades

(1) mdc(n,2n+1)=1


Eu vou postar aqui tudo que eu já tentei

Primeiro tentei isso:
( 1 ) mdc(n, 2n+1) = 1

d = mdc(n,2n+1) = 1

i) d|n; d|2n+1;

ii) c|n; c|2n+1; c|d

O único número que divide a unidade é a própria unidade.

Depois isso:
2n+1+(-2)n=1
1=1


d|n
d|2n+1
Se d|n então d|(-2)n

Então d divide 2n+1, (-2)n e 1.
Como d|1 então d = 1.

E por último:

Mas para o MDC ser igual os números a e b são primos entre sí.

Então b não pode ser escrito na forma b=a*k

b não é multiplo de a.

a = n
b = 2n+1

b = 2(a)+1

b é o sucesso de um múltiplo de a.

Esta última tentativa estaria correta?

Grato.
kesselring
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 17, 2010 02:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Sistemas de Informação
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?