por Brunorp » Dom Abr 05, 2015 16:57
Como poderia calcular o limite abaixo?

-
Brunorp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mar 24, 2015 08:46
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por adauto martins » Seg Abr 06, 2015 18:26
uma correçao,como sempre...

...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Brunorp » Seg Abr 06, 2015 22:43
Adauto,
mais uma vez obrigado pela ajuda, mas dois comentários:
1) Não entendi como você fez

Pois
![sen a.sen b = \frac{1}{2}[cos (a - b) - cos (a + b)] sen a.sen b = \frac{1}{2}[cos (a - b) - cos (a + b)]](/latexrender/pictures/14640aa2a8894e7d43ad2c7fc8771dcc.png)
Substituindo os valores por x e

, não encontro a expressão que você encontrou
2) o sen

=
![\sqrt[]{3}/2 \sqrt[]{3}/2](/latexrender/pictures/f3b8b1495f49de982eae1039f1e1798b.png)
-
Brunorp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mar 24, 2015 08:46
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por adauto martins » Ter Abr 07, 2015 11:20
meu caro,bruop...
primeiramente obrigado pela correçao do seno,displicencia minnha mesmo...
qto a formula dos cossenos,eh uma relaçao trigonometrica q. se deduz das somas e produtos dos arcos de senos e cossenos..

...como

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Brunorp » Qua Abr 08, 2015 13:21
Obrigado!
-
Brunorp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mar 24, 2015 08:46
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Trigonométrica.
por rodsales » Sáb Ago 29, 2009 18:41
- 4 Respostas
- 3904 Exibições
- Última mensagem por rodsales

Sáb Ago 29, 2009 21:19
Trigonometria
-
- equação trigonométrica
por thaa_121 » Qui Abr 08, 2010 15:22
- 1 Respostas
- 3716 Exibições
- Última mensagem por Molina

Qui Abr 08, 2010 23:58
Trigonometria
-
- Inequação trigonométrica
por manuoliveira » Dom Jun 20, 2010 14:23
- 1 Respostas
- 1664 Exibições
- Última mensagem por Douglasm

Dom Jun 20, 2010 16:09
Trigonometria
-
- N.C na forma trigonométrica
por geriane » Seg Jul 05, 2010 13:45
- 2 Respostas
- 2582 Exibições
- Última mensagem por geriane

Seg Jul 05, 2010 14:23
Números Complexos
-
- Inequação trigonométrica
por Capelett » Sex Jun 17, 2011 15:41
- 0 Respostas
- 1233 Exibições
- Última mensagem por Capelett

Sex Jun 17, 2011 15:41
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.