• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites]Função Trigonométrica

[Limites]Função Trigonométrica

Mensagempor Brunorp » Dom Abr 05, 2015 16:57

Como poderia calcular o limite abaixo?

\lim_{x\rightarrow\frac{\Pi}{3}}\frac{1-2cosx}{sen(x-\frac{\Pi}{3})}
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limites]Função Trigonométrica

Mensagempor adauto martins » Seg Abr 06, 2015 15:29

L=(1/2)\lim_{x\rightarrow \pi/3}(1/2-cosx)/(sen(x-\pi/3))==(1/2)\lim_{x\rightarrow \pi/3}(cos\pi/3-cosx)/(sen(x-\pi/3))=(1/2)\lim_{x\rightarrow \pi/3}-2.sen(x+\pi/3).sen(x-\pi/3)/sen(x-\pi/3)=\lim_{x\rightarrow \pi/3}sen(x+\pi/3)=sen(2.\pi/3)=-1/2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limites]Função Trigonométrica

Mensagempor adauto martins » Seg Abr 06, 2015 18:26

uma correçao,como sempre...
sen(2\pi/3)=sen120=1/2...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limites]Função Trigonométrica

Mensagempor Brunorp » Seg Abr 06, 2015 22:43

Adauto,
mais uma vez obrigado pela ajuda, mas dois comentários:
1) Não entendi como você fez
cos \pi/3 - cos x = -2.sen(x+\pi/3).sen(x-\pi/3)
Pois
sen a.sen b = \frac{1}{2}[cos (a - b) - cos (a + b)]
Substituindo os valores por x e \pi/3, não encontro a expressão que você encontrou

2) o sen 2\pi/3=\sqrt[]{3}/2
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limites]Função Trigonométrica

Mensagempor adauto martins » Ter Abr 07, 2015 11:20

meu caro,bruop...
primeiramente obrigado pela correçao do seno,displicencia minnha mesmo...
qto a formula dos cossenos,eh uma relaçao trigonometrica q. se deduz das somas e produtos dos arcos de senos e cossenos..
cosa-cosb=-2.sen((a+b)/2).sen((a-b)/2)...
cosa+cosb=2.sen((a+b)/2).sen((a-b)/2)...como 1-2cosx=(1/2)(1/2-cosx)=(1/2).(cos\pi/3-cosx)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limites]Função Trigonométrica

Mensagempor Brunorp » Qua Abr 08, 2015 13:21

Obrigado!
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?