-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 02:30
Olá Ananda!
Também há um outro colaborador pensando em sua dúvida.
Enquanto isso, verifique sua passagem.

Como exemplo da continuação da soma de termos, eu encontrei:

Até mais.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Seg Mar 10, 2008 10:23
Bom dia!
É diferente porque entra naquela resolução com binômio, né?
Vou tentar hoje resolver novamente para ver se enxergo algo novo!
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 11:38
Bom dia, Ananda.
Então, eu percebi que você considerou igual, mas a relação fundamental da trigonometria é:

Esta igualdade é falsa:

Eu também já desenvolvi este binômio do terceiro membro, mas não obtive sucesso na simplificação da equação:

-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por admin » Seg Mar 10, 2008 13:05
Ananda, uma outra forma que pensei para lidar com este expoente 10, é utilizar esta redução de potência, seguida pela expansão binomial:

E quando as potências em cosseno aparecerem, utilizar esta outra redução:

Pois

Mas este processo é desanimador, ainda prefiro tentar buscar um caminho melhor.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:42
Se bem que na prova real não daria certo...
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:43
Opa, dá sim!
Cos tem que ser zero, certo?
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:46
Exatamente!
E eu me enrolei com a prova real e por fim, vi que estava dando:
0 = 1
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:55
Partindo daí, só cheguei a:

Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 14:09
O que dá uma equação de grau 6 em

.
Mas, partindo de outro desenvolvimento, eu já tinha obtido outra equação de grau 6 em

:

Fazendo uma substituição:


-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Seg Mar 10, 2008 14:29
E como se resolveria isso?
Em programa de função, acho a resposta, mas como se faz no lápis?
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 15:38
Hmmm, grata...
De qualquer modo, a resolução desse exercício foi mais uma "curiosidade", já que não pretendo prestar ITA.
Mas conseguindo fazer todos ou quase todos os exercícios de cada capítulo, acredito que estarei mais apta a fazer as provas das faculdades que prestarei.
Mais uma vez, grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qua Mar 12, 2008 16:46
Olá Ananda, boa tarde!
Hoje pensei em um modo mais simples de fazer, sem argumentos do cálculo, utilizando o fato de o conjunto imagem da função seno ser limitado entre -1 e 1 e as definições da progressão geométrica, veja:
Nossa PG:

Com primeiro termo:

E razão:

Tal que

(soma dos 5 primeiros termos)
A conjunto imagem da função seno é limitado:

Como o quadrado de um número real nunca é negativo, segue que:

Considerando a razão que é

, vamos listar todas as possibilidades de classificação desta PG:
Caso I) Se

Implicaria uma PG constante com termos nulos.
Caso II) Se

Implicaria uma PG decrescente com cada termo menor que o anterior.
Caso III) Se

Implicaria uma PG constante com termos iguais e não nulos.
Agora, analisemos cada caso:
Caso I) Não convém, pois teríamos:
PG =

Com

.
Caso II) Como

Segue que:




E então:


Que também não convém, pois teríamos:
Caso III) É o caso restante.
Tanto que para

, vale a equação trigonométrica da soma de termos da PG:

Logo, de fato,

.
E segue que:



ou

Portanto, o conjunto-solução é:

-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qui Mar 13, 2008 11:10
Bom dia, Fábio!
Grata pela resolução mais prática!
Fico alegre de por enquanto estar sem novas dúvidas!
Grata mais uma vez!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Progressao] série geometrica X progressao geometrica?
por aajunim » Seg Mar 18, 2013 11:19
- 2 Respostas
- 4001 Exibições
- Última mensagem por aajunim

Ter Mar 19, 2013 11:44
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4497 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- Progressão Geométrica
por nicecaps » Seg Mar 22, 2010 11:37
- 2 Respostas
- 4040 Exibições
- Última mensagem por nicecaps

Ter Mar 23, 2010 09:45
Progressões
-
- Progressão Geométrica
por Jessie » Qui Abr 29, 2010 17:49
- 1 Respostas
- 2739 Exibições
- Última mensagem por Elcioschin

Qui Abr 29, 2010 20:12
Pedidos
-
- Progressão Geométrica .-.
por Carolziiinhaaah » Seg Jun 14, 2010 13:56
- 3 Respostas
- 5785 Exibições
- Última mensagem por Carolziiinhaaah

Seg Jun 14, 2010 15:35
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.