• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação - Multiplicação por menos um

Inequação - Multiplicação por menos um

Mensagempor Davi Wesley » Sex Set 05, 2014 21:24

Resolva a inequação.

\frac{2x-1}{x-3} > 5

Dúvida: Por que o denominador não tem o seu sinal alterado quando a equação é multiplicada por menos um?
Minha Resolução:

\frac{2x-1>5(x-3)}{x-3}

\frac{2x-1>5x-15}{x-3}

\frac{-3x+14}{x-3}>0

\frac{-3x+14}{x-3}>0 . (-1)

\frac{+3x-14}{x-3}<0

Obs: O restante da resolução eu conseguir concluir, que inclusive é S = {x\in R (tal que) 3<x<\frac{14}{3}} e realmente concorda com a do livro [Um curso de Cálculo, Volume 1, Hamilton Luiz Guidorizzi] de onde foi retirada a questão, no entanto a única forma de chegar a mesma foi com o denominador sendo "x-3", o que não concordo, pois para mim, após multiplicar por menos um, deveria ficar "x+3".
Assim, volto ao questionamento: Porque o denominador não tem o seu sinal alterado quando a equação é multiplicada por menos um?
Davi Wesley
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Set 05, 2014 20:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências e Tecnologia
Andamento: cursando

Re: Inequação - Multiplicação por menos um

Mensagempor DanielFerreira » Dom Set 07, 2014 22:03

Olá Davi,
seja bem-vindo!

\\ \frac{2x - 1}{x - 3} > 5 \\\\\\ \frac{2x - 1}{x - 3} - 5 > 0 \\\\\\ \frac{2x - 1 - 5(x - 3)}{x - 3} > 0 \\\\\\ \frac{2x - 1 - 5x + 15}{x - 3} > 0 \\\\\\ \frac{- 3x + 14}{x - 3} > 0

Como pode notar, trata-se de uma inequação quociente, devemos resolvê-la da seguinte forma:

- estudar o sinal do numerador;
- estudar o sinal do denominador;
- consideramos o sinal da desigualdade como solução, no quadro de sinais.

Veja,

I) Numerador

\\ - 3x + 14 > 0 \\\\ - 3x > - 14 \; \times (- 1 \\\\ 3x < 14 \\\\ x < \frac{14}{3}


II) Denominador

\\ x - 3 > 0 \\ x > 3


III) Quadro...

__+__________+________(14/3)____-_______
__-____(3)____+_________________+_______
__-____(3)____+_______(14/3)____-_______

Portanto, \boxed{S = \left{x \in R | 3 < x < \frac{14}{3} \right}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59