• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação - Multiplicação por menos um

Inequação - Multiplicação por menos um

Mensagempor Davi Wesley » Sex Set 05, 2014 21:24

Resolva a inequação.

\frac{2x-1}{x-3} > 5

Dúvida: Por que o denominador não tem o seu sinal alterado quando a equação é multiplicada por menos um?
Minha Resolução:

\frac{2x-1>5(x-3)}{x-3}

\frac{2x-1>5x-15}{x-3}

\frac{-3x+14}{x-3}>0

\frac{-3x+14}{x-3}>0 . (-1)

\frac{+3x-14}{x-3}<0

Obs: O restante da resolução eu conseguir concluir, que inclusive é S = {x\in R (tal que) 3<x<\frac{14}{3}} e realmente concorda com a do livro [Um curso de Cálculo, Volume 1, Hamilton Luiz Guidorizzi] de onde foi retirada a questão, no entanto a única forma de chegar a mesma foi com o denominador sendo "x-3", o que não concordo, pois para mim, após multiplicar por menos um, deveria ficar "x+3".
Assim, volto ao questionamento: Porque o denominador não tem o seu sinal alterado quando a equação é multiplicada por menos um?
Davi Wesley
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Set 05, 2014 20:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências e Tecnologia
Andamento: cursando

Re: Inequação - Multiplicação por menos um

Mensagempor DanielFerreira » Dom Set 07, 2014 22:03

Olá Davi,
seja bem-vindo!

\\ \frac{2x - 1}{x - 3} > 5 \\\\\\ \frac{2x - 1}{x - 3} - 5 > 0 \\\\\\ \frac{2x - 1 - 5(x - 3)}{x - 3} > 0 \\\\\\ \frac{2x - 1 - 5x + 15}{x - 3} > 0 \\\\\\ \frac{- 3x + 14}{x - 3} > 0

Como pode notar, trata-se de uma inequação quociente, devemos resolvê-la da seguinte forma:

- estudar o sinal do numerador;
- estudar o sinal do denominador;
- consideramos o sinal da desigualdade como solução, no quadro de sinais.

Veja,

I) Numerador

\\ - 3x + 14 > 0 \\\\ - 3x > - 14 \; \times (- 1 \\\\ 3x < 14 \\\\ x < \frac{14}{3}


II) Denominador

\\ x - 3 > 0 \\ x > 3


III) Quadro...

__+__________+________(14/3)____-_______
__-____(3)____+_________________+_______
__-____(3)____+_______(14/3)____-_______

Portanto, \boxed{S = \left{x \in R | 3 < x < \frac{14}{3} \right}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?