• Anúncio Global
    Respostas
    Exibições
    Última mensagem

### Probabilidade ###

### Probabilidade ###

Mensagempor Evaldo » Seg Jan 04, 2010 15:31

Desitos não cheguei ao resutado do gabarito.

Uma urna I contém 2 bolas vermelhas e 3 bolas brancas e outra II, contém 4 bolas vermelhas e 5 bolas brancas. Sorteia-se uma urna e dela retira-se, ao acaso, uma bola. Qual é a probabilidade de que a bola seja vermelhae tenha vindo da urna I.?

Gabarito: 1/5


Jogando-se ao mesmo tempo 2 dados honestos, a probabilidade de a soma dos pontos ser igual a 5 é:

Gabarito: 1/9
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado

Re: ### Probabilidade ###

Mensagempor MarceloFantini » Seg Jan 04, 2010 15:59

Boa tarde Evaldo!

No primeiro problema, como ele não afirmou nada, suponha que a probabildade seja igual para ambas urnas, logo \frac{1}{2} para cada. Para a urna 1, a probabilidade de ser sorteada a bola vermelha é \frac{2}{5}. Como ele quer a probabilidade de que a bola sorteada seja da urna 1 e vermelha, temos:

P(\mbox{urna 1 e vermelha}) = \frac{1}{2} \times \frac{2}{5}

P(\mbox{urna 1 e vermelha}) = \frac{1}{5}.

No segundo problema, o espaço amostral tem 36 possibilidades. Contudo, existem apenas quatro pares que dão soma 5: (1,4); (2,3); (3,2); (4,1). Logo, a probabilidade pedida é:

P(\mbox{soma 5})=\frac{4}{36}

P(\mbox {soma 5})=\frac{1}{9}

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ### Probabilidade ###

Mensagempor Evaldo » Seg Jan 04, 2010 16:09

Fantini,
Muito obrigado viu, agradeço muito eu fiquei muito errolado nessas duas questões.
Um forte abraço.
Evaldo.
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}