Ex 1. Dados os seguintes elementos de um triângulo ABC: Â = 30º, AB = 8 m, CB = 5 m. Calcule AC.
Certo, eu então desenhei um triângulo qualquer com este ângulo agudo de 30 graus para visualizar melhor o problema, eis o triângulo mal feito:

Certo, então o lado b que quero achar, até aí tudo bem, eu fiz o cálculo utilizando a lei dos cossenos:
b² = a² + c² - 2.b.c.cos30°
b² = 8² + 5² - 2.8.5.cos30°
b² = 64 + 25 - 80.cos30°
b² = 89 - 80 cos30
b² = 89 - 40?3
b² = 49?3
b² = 84,87
b = ?84,47
b= 9,19 cm aprox.
Massss... Fui conferir o gabarito desse exercício o o resultado deu: x= 4?3 + 3
Daí eu fiz 4 vezes raiz de 3 mais 3 e deu aproximadamente 9,92. Um resultado maior que o meu, a conta no gabarito está assim:

E eu confesso que não entendi bem como chegaram nesse resultado, podem me explicar?
Obrigada.




" atribuindo o ângulo de 30° ao vértice B, que está errado. O ângulo de 30° refere-se ao vértice A.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.