• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada Direcional

Derivada Direcional

Mensagempor bruuno » Seg Nov 25, 2013 16:45

Olá galera, estou com uma dúvida em um exercício que caiu na prova de cálculo 2. Vou por o enunciando do exercício e logo depois posto minha dúvida.

Uma montanha pode ser descrita pela função z = 5 -x^2 -4y^2. Um alpinista que se encontra na posição (1,1,0) pretende escalar essa montanha, mas ele deseja buscar a trajetória de maior aclividade. Qual a taxa máxima de aclividade?

---
Eu gostaria de saber se o z faz parte do vetor gradiente ou se eu derivo parcialmente z em relação de x?
No caso ali, ficaria f(x,y,z) = 5 -x^2 -4y^2 -z ou z = 5 -x^2 -4y^2 e resolvo normalmente?
bruuno
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 25, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Derivada Direcional

Mensagempor Bravim » Ter Nov 26, 2013 03:20

A maior taxa de variação é dada quando a derivada direcional se iguala ao vetor gradiente nesse caso é só calcular o gradiente de z e depois calcular o módulo do vetor no ponto dado.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.