• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada Direcional

Derivada Direcional

Mensagempor bruuno » Seg Nov 25, 2013 16:45

Olá galera, estou com uma dúvida em um exercício que caiu na prova de cálculo 2. Vou por o enunciando do exercício e logo depois posto minha dúvida.

Uma montanha pode ser descrita pela função z = 5 -x^2 -4y^2. Um alpinista que se encontra na posição (1,1,0) pretende escalar essa montanha, mas ele deseja buscar a trajetória de maior aclividade. Qual a taxa máxima de aclividade?

---
Eu gostaria de saber se o z faz parte do vetor gradiente ou se eu derivo parcialmente z em relação de x?
No caso ali, ficaria f(x,y,z) = 5 -x^2 -4y^2 -z ou z = 5 -x^2 -4y^2 e resolvo normalmente?
bruuno
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 25, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Derivada Direcional

Mensagempor Bravim » Ter Nov 26, 2013 03:20

A maior taxa de variação é dada quando a derivada direcional se iguala ao vetor gradiente nesse caso é só calcular o gradiente de z e depois calcular o módulo do vetor no ponto dado.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.