• Anúncio Global
    Respostas
    Exibições
    Última mensagem

área lateral piramide

área lateral piramide

Mensagempor slade » Dom Out 13, 2013 15:15

A aresta lateral de uma pirâmide triangular regular mede 5 m, e a aresta da base, 6 m. A área lateral dessa pirâmide, em m^2, é

Imagem

resposta=36
slade
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 13, 2013 15:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: área lateral piramide

Mensagempor young_jedi » Ter Out 15, 2013 19:38

por teorema de pitagoras encontramos a altura dos triangulos das faces

h^2=5^2-\left(\frac{6}{2}\right)^2

h=4

então a area de cada face sera

\frac{4.6}{2}=12

vezes as tres faces

3.12=36
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: área lateral piramide

Mensagempor slade » Ter Out 15, 2013 20:09

cara o apótema da base seria a metade da aresta do triangulo?
slade
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 13, 2013 15:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: área lateral piramide

Mensagempor young_jedi » Ter Out 15, 2013 21:14

os triangulos das faces tem um lado igual ao lada da base ou seja igual a 6 e os outros dois lados são iguais a 5
portanto é um triangulo isoceles e sua altura é calculada pelo teorema de pitagoras

tirang.png
tirang.png (1.59 KiB) Exibido 2134 vezes
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?