• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PROBABILIDADE] Dados

[PROBABILIDADE] Dados

Mensagempor Lidstew » Seg Jul 29, 2013 15:57

Gente, sério, toda vez que alguém faz essa questão dá um resultado diferente. A minha dá 8/9 Gostaria que alguém aqui fizesse e tivesse certeza da resposta :/ (Cálculo explicativo, por favor ): )

|QUESTÃO|
Dois dados são lançados simultaneamente. No final, observa-se as faces superiores.

A) Qual a probabilidade que ocorra uma soma ímpar ou menor que 10?
Lidstew
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 01, 2013 14:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [PROBABILIDADE] Dados

Mensagempor Pessoa Estranha » Qua Jul 31, 2013 15:23

Olá. Estou no primeiro ano do curso de matemática e ainda não estudei a parte de probabilidade, mas vou apresentar uma resolução que remete ao que ainda lembro do ensino médio. Se você tem o gabarito, por favor coloque a resposta e certa; e desculpe se a minha resposta estiver errada, porém tenho quase certeza de que é assim:

Observe que quando jogamos dois dados simultaneamente, temos 36 possibilidades, ou seja:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

É como uma tabela na qual você consegue visualizar as possibilidades. Por exemplo: temos o dado A e o dado B; se o dado A apresenta, na jogada, o número 1, então, este número virá acompanhado pelo número do dado B, que pode ser 1, 2, 3, 4, 5 ou 6. Daí pode ser: 1+1, 1+2, 1+3, 1+4, 1+5, 1+6.
O mesmo ocorre com as outras faces do dado, totalizando, assim, 36 possibilidades.
Bom, prosseguindo, temos a "regra do ou", na qual somamos as possibilidades e é o que iremos usar aqui.

Assim, a questão pergunta qual é a possibilidade de adquirirmos uma soma tal que seja um número ímpar OU um número menor que 10.
Então:
Observe que a possibilidade de obtermos um número ímpar é de \frac{18}{36}, pois temos 18 possíveis números ímpares em 36 possibilidades (estão sublinhados na "tabela" acima). Veja, agora, que a possibilidade de obtermos um número menor que 10 é de \frac{30}{36}, pois note que temos apenas 6 possíveis números maiores do que 6 e, portanto, 30 menores do que 6.

Assim, aplicando a "regra do ou":

\frac{30}{36}+\frac{18}{36}=\frac{48}{36}=\frac{6.8}{6.6}=\frac{2.4}{2.3}=\frac{4}{3}

(Desculpa se está errado! Envie a resposta correta, por favor).
Talvez você possa ter errado na hora de simplificar as frações.

Até mais.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [PROBABILIDADE] Dados

Mensagempor Lidstew » Qua Jul 31, 2013 20:48

Obrigada por responder! Adorei como detalhou bem a resposta, mas acho que faltou uma parte da fórmula na sua resposta, que no caso seria a intersecção entre soma ímpar e soma menor que 10! Infelizmente não tenho o gabarito, mas muito obrigada!
Lidstew
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 01, 2013 14:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?