por rrt » Dom Jul 28, 2013 20:57
Pessoal, alguém me ajuda a entender a questão abaixo:
CESPE/UnB – SERPRO/2013 - Considerando que x,y e z sejam números naturais tais que
x+y=z;que X seja a proposição “x é ímpar”; que Y seja a proposição
“y é par”; e que Z seja a proposição “z é ímpar”, julgue os seguintes
itens.
A proposição X^Z->Y é verdadeira.
A proposição Y->X^Z é verdadeira.
-
rrt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Jul 28, 2013 20:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MateusL » Dom Jul 28, 2013 23:37
A proposição

significa:

é ímpar e

é ímpar implica que

é par.
A proposição

significa:

é par implica que

é ímpar e

é ímpar.
Usando o fato de que

, com

naturais, terás que verificar se essas sentenças são verdadeiras ou falsas.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Seg Jul 29, 2013 03:47
Todo número

par pode ser escrito da forma

onde

é um número natural, ao passo de que todo

ímpar pode ser escrito como

.
Assim, se tomarmos

e

ímpares, então

e

,

e

naturais, de forma que

e, garantido que

, então se

e

forem naturais a sua subtração também o é. Logo,

pode ser escrito como

( onde

é um número natural) e , portanto,

será par.
Agora, se tomarmos

( um par) , então

A diferença

tem de ser par e isso só ocorre se ambos forem ímpares ou ambos forem pares.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por rrt » Seg Jul 29, 2013 13:37
Ok, obrigado.
Mas por que a primeira é verdadeira e a segunda é falsa?
A proposição X^Z->Y é verdadeira. Verdadeira
A proposição Y->X^Z é verdadeira. Falsa
-
rrt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Jul 28, 2013 20:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MateusL » Seg Jul 29, 2013 14:52
A primeira é verdadeira porque, como o Russman mostrou, se

e

são ímpares, então teremos

par.
Já a segunda sentença é falsa porque, se tivermos

par, não teremos necessariamente

e

ímpares. Como o Russman falou, podemos ter

e

pares. Portanto, sabendo apenas que

é par, não podemos podemos afirmar que

e

são ímpares.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por rrt » Seg Jul 29, 2013 18:32
Entendi. Obrigado.
-
rrt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Jul 28, 2013 20:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Proposições
por feraferrari » Qui Fev 24, 2011 15:12
- 3 Respostas
- 2547 Exibições
- Última mensagem por LuizAquino

Sex Fev 25, 2011 08:54
Funções
-
- considere as proposiçoes
por flavio neves » Qua Fev 24, 2016 15:10
- 0 Respostas
- 1287 Exibições
- Última mensagem por flavio neves

Qua Fev 24, 2016 15:10
Lógica
-
- Negação das proposições
por roninhasmr » Seg Nov 13, 2017 14:30
- 0 Respostas
- 1869 Exibições
- Última mensagem por roninhasmr

Seg Nov 13, 2017 14:30
Lógica
-
- proposições lógicas -torneio
por adrianosaldanha » Qui Out 20, 2011 17:06
- 1 Respostas
- 1718 Exibições
- Última mensagem por fraol

Qua Dez 21, 2011 00:00
Sequências
-
- sistema de proposiçoes e conectivos
por flavio neves » Ter Fev 23, 2016 20:16
- 0 Respostas
- 2323 Exibições
- Última mensagem por flavio neves

Ter Fev 23, 2016 20:16
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.