por leocastilho » Qua Jun 12, 2013 12:35
Olá pessoal, estou com um problema aqui que não consigo resolver.
O velocimetro de um automóvel registra a velocidade de 50km/h quando ele passa por um marco quilométrico ao longo da rodovia. Quatro minutos mais tarde, quando o automóvel passa por um segundo marco a 5 Km do primeiro, o velocimetro registra 55Km/h. Use o teorema do valor médio para provar que a velocidade excedeu a 70 Km/h em alguns instântes enquanto o automovel percorria a distância entre os dois marcos.
Primeiramente eu tentei criar um gráfico do tempo em função da velocidade e apliquei na fórmula do valor médio
f '(c) = f(b) - f(a)/ b - a
quando o tempo é 4 a velocidade é 55, logo f(4) = 55
quando o tempo é 0 a velocidade é 50, logo f(0)= 50
f '(c) = 55 - 50 / 4 - 0
f '(c) = 5/4
Apartir deste ponto já não sei o que posso fazer =/. Outro problema é que não sei aonde posso usar a distância de 5 Km entre os marcos.
Obrigado desde já.
-
leocastilho
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jun 12, 2013 12:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Qua Jun 12, 2013 22:40
Vamos tentar ,considere a função

na variável

que fornece a posição do automóvel .Suponha que no instante

,tem-se

para algum

e

,mas sabemos que após 4 min ,

com

(pois

) .Mas ,pelo TVM , existe algum

em

tal que ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo velocidade instantanea
por marcomac78 » Qui Nov 08, 2012 23:36
- 1 Respostas
- 1701 Exibições
- Última mensagem por MarceloFantini

Sex Nov 09, 2012 00:31
Cálculo: Limites, Derivadas e Integrais
-
- velocidade instantânea a partir do limite
por MundiTec » Sex Mar 21, 2014 13:31
- 0 Respostas
- 1687 Exibições
- Última mensagem por MundiTec

Sex Mar 21, 2014 13:31
Cálculo: Limites, Derivadas e Integrais
-
- [VALOR MÉDIO]
por magellanicLMC » Sex Fev 07, 2014 23:05
- 2 Respostas
- 1573 Exibições
- Última mensagem por magellanicLMC

Sáb Fev 08, 2014 17:00
Cálculo: Limites, Derivadas e Integrais
-
- Valor médio
por Janoca » Ter Jun 17, 2014 01:05
- 7 Respostas
- 4791 Exibições
- Última mensagem por alienante

Qua Jun 18, 2014 18:11
Cálculo: Limites, Derivadas e Integrais
-
- teorema do valor medio
por matmatco » Seg Nov 14, 2011 10:18
- 3 Respostas
- 2535 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.