É preciso um cilindro mais alto e com um diâmetro menor para ser mais econômico, mas não estou enxergando como conseguir calcular isso.
Aí está o problema:
Um tanque de forma cillindrica circular reta, sem tampa e com base horizontal tem a capacidade de
m³.O material da base custa o dobro por metro quadrado que o dos lados. Calcular as dimensões do tanque mais econômico.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)