por Anastacia Vaz » Dom Abr 07, 2013 12:03
Gostaria de ajuda para resolver a seguinte questão:
No ano de 1986, o município de João Câmara – RN foi atingido por uma sequência de tremores sísmicos, todos com magnitude maior do que ou igual a 4,0 na escala Richter. Tal escala segue a fórmula empírica, em que M é a magnitude, E é a energia liberada em KWh e E0=7x10-3KWh.
Recentemente, em março de 2011, o Japão foi atingido por uma inundação provocada por um terremoto. A magnitude desse terremoto foi de 8,9 na escala Richter. Considerando um terremoto de João Câmara com magnitude 4,0, pode-se dizer que a energia liberada no terremoto do Japão foi
A) 107,35 vezes maior do que a do terremoto de João Câmara.
B) cerca de duas vezes maior do que a do terremoto de João Câmara.
C) cerca de três vezes maior do que a do terremoto de João Câmara.
D) 1013,35 vezes maior do que a do terremoto de João Câmara.
Resposta Gabarito: A
-
Anastacia Vaz
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Abr 06, 2013 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Comunicação
- Andamento: formado
por nakagumahissao » Dom Abr 14, 2013 13:45
Por favor, utilize o editor de equações quando for postar. Aprender a utilizá-lo não vai lhe tomar mais que alguns minutos.
Ficaram faltando as equações (fórmulas) na postagem da sua questão, que deveria ter sido a seguinte:
No ano de 1986, o município de João Câmara – RN foi atingido por uma sequência de tremores sísmicos, todos com magnitude maior do que ou igual a 4,0 na escala Richter. Tal escala segue a fórmula empírica

, em que M é a magnitude, E é a energia liberada em KWh e E0 = 7 x 10-3 KWh. Recentemente, em março de 2011, o Japão foi atingido por uma inundação provocada por um terremoto. A magnitude desse terremoto foi de 8,9 na escala Richter. Considerando um terremoto de João Câmara com magnitude 4,0, pode-se dizer que a energia liberada no terremoto do Japão foi:
a)

vezes maior do que a do terremoto de João Câmara.
b) cerca de duas vezes maior do que a do terremoto de João Câmara.
c) cerca de três vezes maior do que a do terremoto de João Câmara.
d)

vezes maior do que a do terremoto de João Câmara.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por nakagumahissao » Dom Abr 14, 2013 14:34
RESOLUÇÃO:

Em João Câmara - RN, foi constatado 4,0 nesta escala. Logo:

,
Mas,

.
Então:





Façamos, de forma semelhante, para o terremoto do Japão, cuja magnitude foi de 8,9:







Como estamos querendo comparar as duas energias, devemos então dividir os resultados para E entre Japão e de João Câmara - RN para termos a proporção. Então:


Logo:
O terremoto do Japão foi 10^7,35 vezes maior que o de João Câmara e a resposta correta é (a).
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidade - Questão 57 do Vestibular UESB 2012
por Janffs » Qui Nov 15, 2012 16:26
- 4 Respostas
- 10311 Exibições
- Última mensagem por young_jedi

Sex Mar 30, 2018 12:38
Probabilidade
-
- [Função modular] Vestibular da UEPB 2012
por rickminick » Ter Jul 10, 2012 13:17
- 2 Respostas
- 7864 Exibições
- Última mensagem por rickminick

Seg Jul 16, 2012 01:33
Funções
-
- Questão CEFET-MG 2012
por Thulio_Parazi » Qui Abr 05, 2012 13:48
- 5 Respostas
- 4593 Exibições
- Última mensagem por fraol

Ter Abr 10, 2012 20:02
Trigonometria
-
- Cefet-mg 2012 questão 03
por Thulio_Parazi » Sex Abr 13, 2012 11:12
- 4 Respostas
- 4303 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 22:26
Logaritmos
-
- questão 69 da Fuvest 2012
por Alane » Dom Ago 05, 2012 13:03
- 4 Respostas
- 11566 Exibições
- Última mensagem por Nina Luizet

Dom Ago 02, 2015 15:31
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.