por dravz » Dom Mar 24, 2013 15:17
Se uma bola de metal de massa m for lançada na água e a força de resistência for proporcional ao quadrado da velocidade, então a distância que a bola percorreu até o instante t é dada por:
![s(t)=m/c*ln cos h*\sqrt[2]{gc/mt} s(t)=m/c*ln cos h*\sqrt[2]{gc/mt}](/latexrender/pictures/a2351c9b573bd7633040cde4be4133c8.png)
, em que c é uma constante positiva. Encontre

.
Primeiro da ?*0, ai eu inverti o c e ficou m*c no começo da formula, mas nao to conseguindo resolver. Alguem pode dar uma ajuda?
-
dravz
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Fev 25, 2013 01:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Dom Mar 24, 2013 16:14
Pergunta: a função fornecida é (1)

ou (2)

.Outra pergunta : Não seria para calcular

ao invés de

.Por favor ,confirme estas informações
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por dravz » Dom Mar 24, 2013 16:20
A função fornecida é a 2. E é pra calcular o limite de C->0+ mesmo.
-
dravz
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Fev 25, 2013 01:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Dom Mar 24, 2013 18:43
Penso que há um erro sútil com o enunciado .
1°) Se

é constante positiva ,isto é ,

é fixo . Desta forma, não faz sentido

podemos sim ter

pequeno o quanto queremos, neste caso ,

.Em consequência, não podemos afirmar nada sobre o comportamento de

para qualquer

e sim à medida que

percorre

,pois ,

não é uma função constante e nem limitada .
2°) Há um erro em relação a expressão digitada :

De qualquer forma ,vamos espera mais opiniões de outros usuários do ajuda matemática .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por dravz » Dom Mar 24, 2013 19:45
anexei o enunciado da questão pra ficar mais claro o que ta pedindo msm. nº 74!
- Anexos
-

-
dravz
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Fev 25, 2013 01:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Seg Mar 25, 2013 00:24
Na verdade não é

e sim cosseno hiperbólico .Neste contexto ,
![s(t) = \frac{m}{c} ln\left[cosh\left( \sqrt{\frac{g\cdot c}{m\cdot t}}\right ) \right ] = \frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ] s(t) = \frac{m}{c} ln\left[cosh\left( \sqrt{\frac{g\cdot c}{m\cdot t}}\right ) \right ] = \frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ]](/latexrender/pictures/5a12edfc56319a898f8670668cd345b9.png)
,onde estamos considerando

.
Observe que quando

. Assim ,
![\lim_{c\to0^+} s(t) = \lim_{u\to0^+}\frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ] = \lim_{u\to0^+} \frac{g}{t} \cdot \frac{ln\dfrac{e^u + e^{-u}}{2}}{u^2} \lim_{c\to0^+} s(t) = \lim_{u\to0^+}\frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ] = \lim_{u\to0^+} \frac{g}{t} \cdot \frac{ln\dfrac{e^u + e^{-u}}{2}}{u^2}](/latexrender/pictures/25ebf67edf64bd38db5b193ed23b7dec.png)
.
Este limite apresenta forma indeterminada "0/0" ,por L'hospital ,derivando o numerador e denominador com relação a

e fazendo as devidas simplificações ,vamos obter o seguinte limite equivalente ,

que por sua vez também apresenta indeterminação "0/0" ,portanto ,novamente por L'hospital ,segue que
![\lim_{u\to 0^+} \frac{g}{2t}\left[(e^u + e^{-u})^2 - (e^u - e^{-u})^2\right ] \lim_{u\to 0^+} \frac{g}{2t}\left[(e^u + e^{-u})^2 - (e^u - e^{-u})^2\right ]](/latexrender/pictures/6cd2eec21e2df32c3e849ceabbfe9272.png)
.
De

e

,concluímos que

.
Omitir algumas contas ,mas qualquer dúvida retorne !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por dravz » Seg Mar 25, 2013 04:19

é pq vc inverteu o C, ficando m*c e depois multiplicou pela derivada da raiz ali? obrigado desde já
-
dravz
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Fev 25, 2013 01:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Seg Mar 25, 2013 11:40
Deixei

,certo ?
Desta expressão ,elevando ambos membros ao quadrado ,temos :

,isolando

,obtemos

.Substituindo-se

em

,ficamos com

ou

.
OBS.: Recomendo que refaça todas etapas deste execício ,daí se surgir dúvidas mande de volta !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- L'Hospital
por cal12 » Sáb Nov 26, 2011 17:52
- 1 Respostas
- 1575 Exibições
- Última mensagem por LuizAquino

Sáb Nov 26, 2011 18:13
Cálculo: Limites, Derivadas e Integrais
-
- l'hospital
por vinicastro » Dom Dez 16, 2012 16:32
- 1 Respostas
- 1425 Exibições
- Última mensagem por vinicastro

Dom Dez 16, 2012 17:15
Cálculo: Limites, Derivadas e Integrais
-
- L'Hospital
por matmatco » Sáb Fev 23, 2013 16:35
- 1 Respostas
- 1492 Exibições
- Última mensagem por LuizAquino

Ter Fev 26, 2013 17:09
Cálculo: Limites, Derivadas e Integrais
-
- L'Hospital
por duduxo81 » Sex Jul 08, 2016 11:30
- 3 Respostas
- 5083 Exibições
- Última mensagem por duduxo81

Qua Jul 13, 2016 11:28
Cálculo: Limites, Derivadas e Integrais
-
- Regra de L'Hospital
por Claudin » Qui Jul 14, 2011 20:26
- 2 Respostas
- 1801 Exibições
- Última mensagem por Claudin

Qui Jul 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.