• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[L'Hospital] Problema

[L'Hospital] Problema

Mensagempor dravz » Dom Mar 24, 2013 15:17

Se uma bola de metal de massa m for lançada na água e a força de resistência for proporcional ao quadrado da velocidade, então a distância que a bola percorreu até o instante t é dada por:
s(t)=m/c*ln cos h*\sqrt[2]{gc/mt}, em que c é uma constante positiva. Encontre \lim_{C->0+}.


Primeiro da ?*0, ai eu inverti o c e ficou m*c no começo da formula, mas nao to conseguindo resolver. Alguem pode dar uma ajuda?
dravz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Fev 25, 2013 01:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor e8group » Dom Mar 24, 2013 16:14

Pergunta: a função fornecida é (1) s(t) = \frac{m}{c\cdot ln(cos(h))\cdot \sqrt{\dfrac{g\cdot c}{m\cdot t}}} ou (2) s(t) = \frac{m}{c} \cdot ln(cos(h))\cdot\sqrt{\frac{g\cdot c}{m\cdot t}} .Outra pergunta : Não seria para calcular \lim_{t\to0^+} s(t) ao invés de \lim_{c\to0^+} s(t) .Por favor ,confirme estas informações
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor dravz » Dom Mar 24, 2013 16:20

A função fornecida é a 2. E é pra calcular o limite de C->0+ mesmo.
dravz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Fev 25, 2013 01:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor e8group » Dom Mar 24, 2013 18:43

Penso que há um erro sútil com o enunciado .

1°) Se a é constante positiva ,isto é ,a é fixo . Desta forma, não faz sentido a \to 0^+ podemos sim ter a > 0 pequeno o quanto queremos, neste caso ,a\in (0,\delta) .Em consequência, não podemos afirmar nada sobre o comportamento de s(t) para qualquer a > 0 e sim à medida que t percorre (0,+\infty),pois , s não é uma função constante e nem limitada .

2°) Há um erro em relação a expressão digitada : \lim_{c\to0^+}

De qualquer forma ,vamos espera mais opiniões de outros usuários do ajuda matemática .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor dravz » Dom Mar 24, 2013 19:45

anexei o enunciado da questão pra ficar mais claro o que ta pedindo msm. nº 74!
Anexos
24032013109.jpg
dravz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Fev 25, 2013 01:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor e8group » Seg Mar 25, 2013 00:24

Na verdade não é cos(h) e sim cosseno hiperbólico .Neste contexto , s(t) = \frac{m}{c} ln\left[cosh\left( \sqrt{\frac{g\cdot c}{m\cdot t}}\right )    \right ] = \frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ] ,onde estamos considerando u(t) = \sqrt{\frac{g\cdot c}{m\cdot t}} .

Observe que quando c \to 0^+ , u(t) \to 0^+ . Assim ,

\lim_{c\to0^+} s(t) = \lim_{u\to0^+}\frac{g}{u^2 \cdot t} \cdot ln\left[\frac{e^{u} + e^{-u}}{2} \right ] = \lim_{u\to0^+} \frac{g}{t} \cdot \frac{ln\dfrac{e^u + e^{-u}}{2}}{u^2} .

Este limite apresenta forma indeterminada "0/0" ,por L'hospital ,derivando o numerador e denominador com relação a u(t) e fazendo as devidas simplificações ,vamos obter o seguinte limite equivalente ,

\lim_{u\to 0^+} \frac{g}{2t}\cdot \frac{\dfrac{e^u -e^{-u}}{e^u +e^{-u}}}{u} que por sua vez também apresenta indeterminação "0/0" ,portanto ,novamente por L'hospital ,segue que

\lim_{u\to 0^+} \frac{g}{2t}\left[(e^u + e^{-u})^2  - (e^u - e^{-u})^2\right ] .

De \lim_{u\to 0^+} e^u + e^{-u} = 1 e \lim_{u\to 0^+} e^u - e^{-u} = 0 ,concluímos que \lim_{c\to0^+} s(t) = \frac{g}{2t} .

Omitir algumas contas ,mas qualquer dúvida retorne !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor dravz » Seg Mar 25, 2013 04:19

\frac{g}{{u}^{2}*t} é pq vc inverteu o C, ficando m*c e depois multiplicou pela derivada da raiz ali? obrigado desde já
dravz
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Fev 25, 2013 01:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [L'Hospital] Problema

Mensagempor e8group » Seg Mar 25, 2013 11:40

Deixei u(t) = \sqrt{\frac{g\cdot c}{m\cdot t} ,certo ?

Desta expressão ,elevando ambos membros ao quadrado ,temos :

u^2(t) = \frac{g\cdot c}{m\cdot t} ,isolando c ,obtemos

c = \frac{u^2(t) \cdot m \cdot t}{g} .Substituindo-se c em m/c ,ficamos com \frac{m}{\dfrac{u^2(t) \cdot m \cdot t}{g}} ou \frac{g}{u^2(t) \cdot t} .

OBS.: Recomendo que refaça todas etapas deste execício ,daí se surgir dúvidas mande de volta !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59