• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função Injetora, Sobrejetora] Dúvida exerícicios

[Função Injetora, Sobrejetora] Dúvida exerícicios

Mensagempor Eduardo_GNR » Qui Mar 14, 2013 21:41

Pessoal,

Sou novo no fórum e estou estudando funções injetoras, sobrejetoras, bijetoras, enfim, e tenho 3 exercícios aqui que eu não sei como fazer. Alguém ajuda?


Determine quais das seguintes funções de Z ? Z são injetoras:
1 f(x) = x ? 1 2 f(x) = x2 + 1 3 f(x) = dx/2e
2 Quais das funções anteriores são sobrejetoras? 3 Se f e f ? g são injetoras, então g é injetora também? Apresente uma prova para justi?car a sua resposta

Obrigado.
Eduardo_GNR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 14, 2013 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Função Injetora, Sobrejetora] Dúvida exerícicios

Mensagempor e8group » Sex Mar 15, 2013 12:15

vou postar apenas a resolução (2) não entendi a questão (1) não estar claro ,por isso é importante utilizar LaTeX para redigir suas equações ,fórmulas e etc .

Resolução : (Caso geral )

Considere ,

f : A \mapsto B e g : A' \mapsto B' .

Hipótese : f , f\circ g são injectivas .

Vamos considerar o caso em que A \subset  B' mas B' não está contido em A .Sendo assim ,\exists T = A\cap B' e f \circ g : T \mapsto B .

Suponhamos que g não é injectiva ,isto é , dados x_1 , x_2 \in D_g distintos não implica g(x_1) \neq g(x_2) ,em outras palavras ,dados x_1 , x_2 \in D_g distintos ,podemos ter g(x_1) = g(x_2) .Se x_1,x_2 são simultaneamente elementos do conjunto A e B ,isto é , x_1 , x_2 \in T então g é injetiva .

Prova :

Como estamos supondo que g não é injectiva , podemos ter g(x_1) = g(x_2) para x_1 \neq x_2 .Se g(x_1) = g(x_2) então f\circ g (x_1) = f\circ g (x_2) , por outro lado f\circ g (x_1) \neq f\circ g (x_2) para x_1 \neq x_2 .

Observe que temos uma contradição , pois f\circ g (x_1) = f\circ g (x_2) \iff x_1 = x_2 ;logo g é injetiva .

Deixo para você o caso em que A = B' ou seja A \subset B' e B' \subset A o argumento será semelhante .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.