• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de função

Limite de função

Mensagempor ana » Sex Set 25, 2009 23:03

Boa noite!
Tenho uma dúvida com limite de função. Qnd o limite tende a 0 e ao infinito não consigo resolver a questão, pois a conta não pode conter o 0 no denominador. Qual a maneira de resolver a questão? Fórmula de Báskara?

obrigada.
ana
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Set 19, 2009 20:57
Formação Escolar: GRADUAÇÃO
Área/Curso: administração
Andamento: cursando

Re: Limite de função

Mensagempor marciommuniz » Sex Set 25, 2009 23:06

Olá, tente estudar sobre a regra L'Hopital. Acho o meio mais fácil de resolver indeterminações.

Link: http://pt.wikipedia.org/wiki/Regra_de_l'H%C3%B4pital

Poste o limite aqui, talvez nem seja preciso aplicá-la.
Um abraço!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?