por amandamn » Ter Set 08, 2009 18:43
Olá, Boa tarde!
Estou tendo dificuldades na construção de graficos de uma função tipo: tex]f(x)= \frac{x^3+3x^2+4}{x}[/tex]
1º encontrei o dominio da função;
2º Achei os se ela eh crescente ou de crescente verificando se a derivada 1ª é maior ou menor que zero;
3º Encontrei os intervalos de concavidade para cima e para baixo e determinei se tem pontos de inflexão atravez da derivada 2ª ordem;
No entanto estou tendo dificuldade em:
1º Não sei como verificar a simetria da função
2º Como se determina se têm assintotas ou não?
3º Não entendo como encontrar o valçor maximo e minimo locais, eu devo determinar um intervalo?
eu tneho feito da seguinte forma, eu igualo a zero a f'(x) para achar o valor de f nos pontos criticos e depois encontro o valor de f nos extremos mas não entendo a relação entre os dois passos para encontrar o max e min.
4º Como encontro as intersecções do grafico da função com os eixos coordenados.
-
amandamn
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 08, 2009 18:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenhari a Informação
- Andamento: cursando
por Neperiano » Dom Set 18, 2011 13:37
Ola
Depois de montar o gráfico
Para ver se é simetrica, você tenque ver o quanto ela mantem suas características, sem altera-las
Assintota tem a ver com tendência do gráfico para infinito, zero
Valor máximo e minimo, tem a ver com o valor maio e menor que a equação possui
Estas questões que você está em dúvida, tem a ver com cálculo, de uma olhada nessa matéria, principalmente, limites e derivadas
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Dom Set 18, 2011 17:11
amandamn,
Veja se a vídeo-aula "22. Cálculo I - Construção de Gráficos" lhe ajuda a clarear o procedimento. Essa vídeo-aula está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Encontrar o par ordenado a partir de uma equação da reta
por Larice Mourao » Dom Mai 27, 2012 02:01
- 6 Respostas
- 7362 Exibições
- Última mensagem por Larice Mourao

Qui Jun 07, 2012 23:39
Geometria Analítica
-
- [Software de analise de gráficos] Digitalização de gráficos
por Adam Brave » Sáb Jul 12, 2014 21:28
- 0 Respostas
- 2440 Exibições
- Última mensagem por Adam Brave

Sáb Jul 12, 2014 21:28
Funções
-
- [derivada]contrução de grafico
por giulioaltoe » Qua Ago 17, 2011 19:46
- 1 Respostas
- 985 Exibições
- Última mensagem por LuizAquino

Qua Ago 17, 2011 22:52
Cálculo: Limites, Derivadas e Integrais
-
- P.A. com razão diferente a partir do A2
por livio isbrecht » Sex Jan 06, 2012 21:44
- 6 Respostas
- 8131 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 17:49
Progressões
-
- [Calculo] Lei da função a partir do grafico
por deosdete » Dom Jun 10, 2012 16:29
- 4 Respostas
- 3300 Exibições
- Última mensagem por LuizAquino

Ter Jun 12, 2012 12:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.