• Anúncio Global
    Respostas
    Exibições
    Última mensagem

328 Matrizes e Determinantes

328 Matrizes e Determinantes

Mensagempor Colton » Qui Out 28, 2010 17:57

+
+

Olá pessoal,

Estou “quebrando os dentes” no seguinte exercício, para o qual não estou encontrando solução:

“Supondo positivos todos os elementos literais da matriz quadrada

{[(a1), (a2), ... (), (an)]; [(b1), (b2), ... (bn-1), (0)]; [.............]; [ (r1), (0), ... (0), (0)]}

e sendo n múltiplo de 4, qual é o sinal do determinante correspondente?”

Notar que no enunciado do problema a célula a13 está vaga...

Seguindo a indicação do enunciado eu tentei trabalhar com a seguinte matriz (por exemplo 4x4) e
respectivas manipulações:

{[(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]; [(r1), (0), (0), (0)]}
-{[(r1), (0), (0), (0)]; [(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]}
-r1{[(1), (0), (0), (0)]; [(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]}

aplicanto a Regra de Chió chego a:

-r1{(a2), (a3), (a4)]; [(b2), (b3), (0)]; [(c2), (c3), (0)]} onde eu “empaco” pois o determinante resulta em

-r1[a4 b2 c3 - a4 b3 c2] = -r1a4 [b2 c3 - b3 c2]

e eu não vejo como determinar que este produto seja positivo (que é a resposta do exercício).

Espero que haja alguém mais esperto do que eu para me orientar...

Sds

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: 328 Matrizes e Determinantes

Mensagempor MarceloFantini » Qui Out 28, 2010 22:32

Colton, desculpe mas não consigo entender. Você pode tentar usando Latex?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: 328 Matrizes e Determinantes

Mensagempor Colton » Sex Out 29, 2010 08:37

+
+


Olá Fantini


É que eu não sei usar o Latex....

a matriz é a seguinte

|a1 - a2 ... ( ) - an|
|b1 - b2 ... bn-1 - 0 |
|......................|
| r1 - 0 ... 0 - 0 |

espero que assim fique + claro...apesar que no "prever" o editor corta os espaços!

sds

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}