• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor ARCS » Qui Out 28, 2010 19:27

Boa Noite,

Gostaria que alguem explica-se como resolver essa questão de limite SEM USAR o artifício de substituição de variáveis.

PS: Sei resolver usando o artíficio de substituição, meu professor resolveu na aula sem usa-lo, porém não entendi.

Expliquem detalhadamente para que eu possa entender!

Grato.
\lim_{x\rightarrow0}\frac{\sqrt[3]{x+1}-1}{x}
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor victoreis1 » Qui Out 28, 2010 20:02

Boa noite.. se vc já aprendeu derivadas, use a regra de L'Hôpital, transformando o limite em \lim_{x\to0} \frac{\frac{d}{dx}(\sqrt[3]{x+1} -1)}{\frac{dx}{dx}}

sabe-se que a derivada de x é 1 e a de (-1) é zero.. logo o limite é igual a \lim_{x\to0} {\frac{d}{dx}(\sqrt[3]{x+1})}

Não sei muito de derivadas.. se souber calcular, vê aí se dá certo (:
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Out 28, 2010 22:30

Use fatoração de cubos: a^3 - b^3 = (a-b)(a^2 +ab +b^2). Você já tem um termo, agora multiplique numerador e denominador pelo outro.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.