por leandro_aur » Dom Out 24, 2010 17:29
Senhores, bom dia.
Estou com dificuldades em resolver um exercício de GA que segue abaixo:
São dados

.
Eu desenhei os vetores consigo enchergar PQ porém não sei como projetar esses vetores :(
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por VtinxD » Dom Out 24, 2010 22:21
Vai ser difícil explicar sem uma imagem mais vou tentar:
Sendo o vetor OB=b e BQ=4/5a , a soma desses dois vetores é exatamente o vetor OQ, porque

e

então sua soma é o vetor OQ.
Mesma ideia para achar o vetor OP, OA+AP.
Perceba que OP=-PO,pois

, e agora somando o vetor PO com o vetor OQ temos exatamente o vetor PQ, pois

Espero ter ajudado
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por leandro_aur » Qua Out 27, 2010 03:42
Ajudou muitooo
Consegui entender tudo! Realmente com o desenho fica melhor mesmo, mas conforme você foi demonstrando os vetores eu fui verificando através do desenho que eu havia feito e tudo ficou bem claro.
VtinxD muito obrigado por sua ajuda. Ainda não está claro GA para mim mas com o tempo a gente melhora

-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Distância entre dois vetores
por Ronaldobb » Dom Nov 16, 2014 12:38
- 0 Respostas
- 1521 Exibições
- Última mensagem por Ronaldobb

Dom Nov 16, 2014 12:38
Geometria Analítica
-
- [Distancia] Geometria analitica
por amigao » Sáb Mai 11, 2013 12:01
- 1 Respostas
- 1210 Exibições
- Última mensagem por e8group

Sáb Mai 11, 2013 15:09
Geometria Analítica
-
- Geometria Analitica - Distância de ponto à reta.
por Gutembreg Balbino » Seg Mai 05, 2014 21:14
- 4 Respostas
- 2524 Exibições
- Última mensagem por Gutembreg Balbino

Qua Mai 07, 2014 08:52
Geometria Analítica
-
- [Geometria Analítica] distância entre pontos
por aprendiz007 » Sex Dez 02, 2016 17:58
- 0 Respostas
- 2516 Exibições
- Última mensagem por aprendiz007

Sex Dez 02, 2016 17:58
Geometria Analítica
-
- GEOMETRIA ANALITICA >> DISTANCIA ENTRE PLANOS, AJUDA
por JEFFERSONUMBELINO » Ter Abr 22, 2014 17:32
- 0 Respostas
- 1284 Exibições
- Última mensagem por JEFFERSONUMBELINO

Ter Abr 22, 2014 17:32
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.