• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações métricas do triângulo , tangente à uma circunferênc

Relações métricas do triângulo , tangente à uma circunferênc

Mensagempor c_zaidan » Sex Out 22, 2010 15:57

A questão é: Os raios de 2 circunferências concêntricas medem 20cm e 25cm. Calcular a medida de uma corda da circunferência exterior, tangente à circunferência interior.
Bom , fiz os desenhos das 2 circunferências, uma dentro da outra. Tracei a tangente, formando a hipotenusa de um triangulo, onde um dos catetos vai valer 25 cm, e o outro eu não sei o valor. E foi até aonde eu consegui chegar. Ajude-me, por favor!!! Tenho mt dificuldade qdo os objetos estão inscritos em circunferÊncias ... *-)
c_zaidan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 22, 2010 15:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Relações métricas do triângulo , tangente à uma circunfe

Mensagempor MarceloFantini » Sex Out 22, 2010 16:19

Você errou, não é cateto, é hipotenusa. Um dos catetos é 20cm, que é o raio da circunferência tangenciada. O raio é sempre perpendicular a reta no ponto de tangência. Usando isso, você tem um triângulo retângulo com hipotenusa 25, um cateto de 20 cm e outro cateto de tamanho x que é o que você quer encontrar. Use pitágoras, você deve encontrar o valor 15. O comprimento da corda é o dobro desse valor pois o raio divide a corda em dois pedaços iguais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Relações métricas do triângulo , tangente à uma circunfe

Mensagempor c_zaidan » Sex Out 22, 2010 18:50

Fantini escreveu:Você errou, não é cateto, é hipotenusa. Um dos catetos é 20cm, que é o raio da circunferência tangenciada. O raio é sempre perpendicular a reta no ponto de tangência. Usando isso, você tem um triângulo retângulo com hipotenusa 25, um cateto de 20 cm e outro cateto de tamanho x que é o que você quer encontrar. Use pitágoras, você deve encontrar o valor 15. O comprimento da corda é o dobro desse valor pois o raio divide a corda em dois pedaços iguais.



Valeu msm!!! Como um desenho errado estraga td a questão... :oops:
c_zaidan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 22, 2010 15:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.