• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(EEAR)Função

(EEAR)Função

Mensagempor natanskt » Ter Out 19, 2010 10:40

seja a função f em R-{3} em R-{1},definida por f(x)=x+3/x-3 pela inversa de f,o numero 5 é imagem do numero:
a-)1/4
b-)1/3
c-)3
d-)4

esse R É REAL
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (EEAR)Função

Mensagempor DanielRJ » Ter Out 19, 2010 16:37

natanskt escreveu:seja a função f em R-{3} em R-{1},definida por f(x)=x+3/x-3 pela inversa de f,o numero 5 é imagem do numero:
a-)1/4
b-)1/3
c-)3
d-)4

esse R É REAL



f(x)=\frac{x+3}{x-3}

y=\frac{x+3}{x-3}

x=\frac{y+3}{y-3}

xy-3x=y+3

xy-y=3+3x

y(x-1)=3+3x

y=\frac{3+3x}{x-1}

f(x)^{-1}=\frac{3+3x}{x-1} essa é a inversa.


natanskt escreveu:o numero 5 é imagem do numero


ou seja para quais valores do dominio "x" eu terei imagem 5.

5=\frac{3+3x}{x-1}

5x-5=3+3x
2x=8

x=4
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}