• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração envolvendo triângulo

Demonstração envolvendo triângulo

Mensagempor Balanar » Dom Out 17, 2010 00:47

Na figura ao lado, \overline {RQ} é perpendicular a \overline {PQ}, \overline {PQ} é perpendicular a <img src="http é perpendicular a \overline {PT} \,\,e\,\, \overline {TS}\overline {PR}.
Prove que :
(TS).(RQ)=(PS).(PQ)

Figura - Cópia.png
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Demonstração envolvendo triângulo

Mensagempor Loretto » Dom Out 17, 2010 03:39

Nesse exercício, como trata-se de provarmos uma igualdade entre segmentos de retas, com seus respectivos ângulos adjacentes, é muito importante lembrar do seguinte teorema : " O maior lado de um triângulo é aquele oposto ao maior ângulo", e também de que " O menor lado é aquele oposto ao menor ângulo". Assim, trabalhando as incógnitas dos segmentos, chegaremos a tese procurada. Tente resolvê-lo trabalhando a partir desse teorema que você conseguirá. Um abração !!
Editado pela última vez por Loretto em Seg Out 18, 2010 01:01, em um total de 1 vez.
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Demonstração envolvendo triângulo

Mensagempor VtinxD » Dom Out 17, 2010 19:52

Peguemos primeiro o angulo TPS:
sen\left(TPS \right)=\left(\frac{TS}{TP} \right).
Como TPS e RPQ são complementares o sen\left(TPS \right)=cos\left(RPQ \right) e cos\left(RPQ \right)=\left(\frac{PQ}{RP} \right)
De onde tiramos a igualdade:\left(\frac{TS}{TP} \right)=\left(\frac{PQ}{RP} \right)\Rightarrow\left(\frac{RP}{TP} \right)=\left(\frac{PQ}{TS} \right)(1)
Como TPS e RPQ são complementares o cos\left(TPS \right)=sen\left(RPQ \right) e sen\left(RPQ \right)=\left(\frac{RQ}{RP} \right)
De onde tiramos a outra igualdade:\left(\frac{PS}{TP} \right)=\left(\frac{RQ}{RP} \right)\Rightarrow\left(\frac{RP}{TP} \right)=\left(\frac{RQ}{PS} \right)(2)

Como \left(\frac{RP}{TP} \right)=\left(\frac{RQ}{PS} \right)=\left(\frac{PQ}{TS} \right) e agora multiplicando em cruz a parte que nos interessa,temos:

(TS).(RQ)=(PQ)(PS)

Espero ter ajudado
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: Demonstração envolvendo triângulo

Mensagempor Balanar » Dom Out 17, 2010 21:09

Obrigado pela resolução VtinxD.
:-D
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.