por natanskt » Qui Out 14, 2010 11:08
11-)sendo a>0 e a diferente de 1,o conjunto solução da equação


,está no conjunto:
a-){1,2,3,4}
b-){-4,-3,-2,-1,0,1}
c-){-1,0,1,2,3,4}
d-){0,1,2,3,4}
pimeiramente corte os

deixei apenas os logaritimando,pode fazer isso?
não consigo fazer,me ajuda
abraços
-
natanskt
- Colaborador Voluntário

-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por DanielRJ » Qui Out 14, 2010 14:43
natanskt escreveu:11-)sendo a>0 e a diferente de 1,o conjunto solução da equação


,está no conjunto:
a-){1,2,3,4}
b-){-4,-3,-2,-1,0,1}
c-){-1,0,1,2,3,4}
d-){0,1,2,3,4}
pimeiramente corte os

deixei apenas os logaritimando,pode fazer isso?
não consigo fazer,me ajuda
abraços
Bom não sei se está correto mas vamos tntar. ele falou que

e

(
logico porque é a bse é claro!) eu não sei se estou correto ,mas podemos escolher valores para A.e nesse caso eu escolhendo a=10 fica evidente uma propriedade de logaritmos no primeiro membro, que Fala quando as bases forrem iguais o resultado será o logaritmando. ok? então vamos lá.





Verificando a condição de existencia:



--->Ok!



---->Ok!

Essas são as raizes a resposta final eu daria como (C) mas como não tenho certeza fica a cargo de um professor ou alguem que saiba explicar a resposta detalhadamente porfavor!!!
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Qui Out 14, 2010 15:43
Solução correta
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por DanielRJ » Qui Out 14, 2010 16:48
Eu estava meio em duvida em relação a primeira informação do problema
Obrigado .

-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielRJ » Qui Out 14, 2010 17:54
natanskt escreveu:

não intendi essa passagem, 6^1 eu intendi mais e o 10 do outro lado???

sempre!
então:

Fantini escreveu:Solução incorreta do ponto de vista formal. Você escolheu um caso particular de base, e essa resolução não funciona pra outros casos. Vou fazer a resolução mais geral:

Tomando o logaritmo decimal dos dois lados:




Como as bases são iguais, podemos igualar os logaritmandos e resolver verificando as condições, mas a partir daí você pode ver pelo post do Daniel. É importante que você veja o método geral porque a maneira como o Daniel resolveu
não pode ser usada pra qualquer outra.
Perfeito fantini, pelo jeito que eu fiz está errado então.eu dei sorte de ter acertado?
Editado pela última vez por
DanielRJ em Qui Out 14, 2010 18:03, em um total de 1 vez.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qui Out 14, 2010 18:00
Não está errado, você apenas pegou o caso particular mais fácil pra poder aplicar uma propriedade. O problema com isso é que, se você escolhesse qualquer outra base, teria que resolver da maneira que eu fiz, portanto é melhor fazer da geral mesmo. E outra, não sabemos se ele vai ter que resolver uma questão escrita ou não, e isso seria vetado com certeza.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (EEAR) Equação logaritmica
por natanskt » Seg Out 11, 2010 16:32
- 1 Respostas
- 1141 Exibições
- Última mensagem por MarceloFantini

Seg Out 11, 2010 17:36
Logaritmos
-
- (EEAR) Equação logaritmica
por natanskt » Qui Out 14, 2010 12:15
- 2 Respostas
- 4816 Exibições
- Última mensagem por MarceloFantini

Qui Out 14, 2010 16:21
Logaritmos
-
- (EEAR) Equação logaritmica
por natanskt » Qui Out 14, 2010 20:43
- 3 Respostas
- 2104 Exibições
- Última mensagem por mayara 2010

Ter Mai 21, 2013 16:06
Logaritmos
-
- Equação logaritmica
por DanielRJ » Qui Out 07, 2010 17:20
- 4 Respostas
- 2466 Exibições
- Última mensagem por DanielRJ

Sáb Out 09, 2010 15:28
Logaritmos
-
- (AFA) equação logaritmica
por natanskt » Sex Out 08, 2010 12:27
- 2 Respostas
- 1873 Exibições
- Última mensagem por Molina

Sex Out 08, 2010 14:30
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.