• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:53

considerando log_m{10}=1,4e log_m{50}=2,4,pode-se afirmar que,com base nesses dados,que o valor do logaritmo decimal de 5 é:
a-)3/7
b-)1/2
c-)5/7
d-)7/3
e-)7/5
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:40

Veja que \log_m 50  \log_m (10 \cdot 5) = \log_m 10 + \log_m 5 = 2,4 \rightarrow 1 + \log_m 5 = 2,4 \rightarrow \log_m 5 = 1,4 = \frac{14}{10} = \frac{7}{5}

Alternativa E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 10:48

olá fantini
o gabarito aqui esta falando que é a alternativa C
já encontrei erros no gabarito,mais pode ver certinho se vc não esqueceu de nada:?

ABRAÇOS AMIGO
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Qui Out 14, 2010 16:38

Aparentemente a minha resolução ficou incompleta (e errada, errei uma conta, que consertarei agora):

\log_m 50 = \log_m (5 . 10) = \log_m 5 + \log_m 10 = \log_m 5 + 1,4 = 2,4 \rightarrow \log_m 5 = 1

Assim, m^1 = 5 \rightarrow m = 5

O que nós QUEREMOS: o logaritmo decimal de 5, que eu vou chamar de x (\log_{10} 5 = x) .

O que nós TEMOS: \log_5 10 = 1,4 .

Da segunda afirmação:

5^{1,4} = 10

Tomando o logaritmo decimal dos dois lados:

\log_{10} 5^{1,4} = \log_{10} 10 \rightarrow 1,4 . \log_{10} 5 = 1 \rightarrow \log_{10} 5 = \frac{1}{1,4} = \frac{10}{14} = \frac{5}{7}

Agora está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.