• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algoritmo de Euclides estendido

Algoritmo de Euclides estendido

Mensagempor Nane » Qua Out 13, 2010 22:50

Dados a e b inteiros, seja d=mdc(a,b) então existem r e s inteiros tais que ra+sb=d.Usando o algoritmo de Euclides estendido mostre que se p é primo e a e b são inteiros tais que p é divisor de ab, então p é divisor de a ou p é divisor de b.

Preciso de ajuda.

p é primo, então p é divisível por p e 1
a e b inteiros
p/ab, então p/a ou p/b
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Rosangela Ramos » Seg Out 18, 2010 18:26

Seja p um primo e a e b inteiros tais que p é divisor de ab.

Queremos provar que p é divisor de a ou p é divisor de b. Ou seja, queremos provar que se p não é divisor de a então p tem que ser divisor b.

Suponha que p não é divisor de a. Como p é primo, p só tem dois divisores (1 e p) e como p não divide a, temos então que mdc(a,p)=1. Pelo algoritmo estendido de Euclides temos então que existem r e s inteiros tais que

s.a+r.p=1

Multiplicando ambos os membros por b, temos

s.a.b + r.p.b = b

Mas p divide a.b e p claramente divide p.b logo p divide s.a.b + r.p.b, ou seja,
p divide b.
Rosangela Ramos
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Out 18, 2010 18:16
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Nane » Seg Out 18, 2010 19:04

Obrigada pela ajuda, tenho ainda dificuldades em trabalhar com essas novas ferramentas, fórum, etc.
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Rosangela Ramos » Seg Out 18, 2010 19:06

vou te enviar uma definição mais detalhada...tudo bem?
Rosangela Ramos
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Out 18, 2010 18:16
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Algoritmo de Euclides estendido

Mensagempor Nane » Ter Out 19, 2010 18:38

Consegui entender e reescrever essa proposição.
Valeu,
atenciosamente,
Nane
Nane
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 09, 2010 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59